Regulating the Tip Effect on Single‐Atom and Cluster Catalysts: Forming Reversible Oxygen Species with High Efficiency in Chlorine Evolution Reaction

Chlorine evolution reaction has been applied in the production since a century ago. After times of evolution, it has been widely realized by the electrocatalytic process on anode nowadays. However, the anode applied in production contains a large amount of precious metal, increasing the cost. It is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2022-04, Vol.134 (16), p.n/a
Hauptverfasser: Yang, Jiarui, Li, Wen‐Hao, Xu, Kaini, Tan, Shengdong, Wang, Dingsheng, Li, Yadong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chlorine evolution reaction has been applied in the production since a century ago. After times of evolution, it has been widely realized by the electrocatalytic process on anode nowadays. However, the anode applied in production contains a large amount of precious metal, increasing the cost. It is thus an opportunity to apply sub‐nano catalysts in this field. By regulating the tip effect (TE) of the catalyst, it was discovered that the oxidized sub‐nano iridium clusters supported by titanium carbide exhibit much higher efficiency than the single‐atom one, which demonstrates the significance of modifying the electronic interaction. Moreover, it exhibits a ≈20 % decrease of the electricity, ≈98 % selectivity towards chlorine evolution reaction, and high durability of over 350 h. Therefore, this cluster catalyst performs great potential in applying in the practical production and the comprehension of the tip effect on different types of catalysts is also pushed to a higher level. The tip effect (TE) has not been mentioned enough in catalysts designing, having a large space to explore. Based on the model of oxidized sub‐nano clusters, the TE was regulated and found to be efficient in designing catalysts, making TiC perform a high activity during the chlor‐alkali industry. This cluster system exhibits great potential in applying in the practical production and the comprehension of the TE is also pushed to a higher level.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.202200366