Room Temperature Gate Tunable Non Reciprocal Charge Transport in Lattice Matched InSb/CdTe Heterostructures

The manipulation of symmetry provides an effective way to tailor the physical orders in solid-state systems. With the breaking of both the inversion and time-reversal symmetries, non-reciprocal magneto-transport may emerge in assorted non-magnetic systems to enrich spintronic physics. Here, we repor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-04
Hauptverfasser: Li, Lun, Wu, Yuyang, Liu, Xiaoyang, Ruan, Hanzhi, Zhenghang Zhi, Liu, Jiuming, Zhang, Yong, Huang, Puyang, Ji, Yuchen, Tang, Chenjia, Yang, Yumeng, Che, Renchao, Kou, Xufeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The manipulation of symmetry provides an effective way to tailor the physical orders in solid-state systems. With the breaking of both the inversion and time-reversal symmetries, non-reciprocal magneto-transport may emerge in assorted non-magnetic systems to enrich spintronic physics. Here, we report the observation of the uni-directional magneto-resistance (UMR) in the lattice-matched InSb/CdTe film up to room temperature. Benefiting from the strong built-in electric field of \(0.13 \mathrm{~V} \cdot \mathrm{nm}^{-1}\) in the hetero-junction region, the resulting Rashba-type spin-orbit coupling and quantum confinement warrant stable angular-dependent second-order charge current with the non-reciprocal coefficient 1-2 orders of magnitude larger than most non-centrosymmetric materials at 298 K. More importantly, this heterostructure configuration enables highly-efficient gate tuning of the rectification response in which the enhancement of the UMR amplitude by 40% is realized. Our results advocate the narrow-gap semiconductor-based hybrid system with the robust two-dimensional interfacial spin texture as a suitable platform for the pursuit of controllable chiral spin-orbit devices and applications.
ISSN:2331-8422