Biomass of a Psychrophilic Fungus as a Biocatalyst for Efficient Direct Esterification of Citronellol

A biomass-bound lipase from psychrophilic Chrysosporium pannorum A-1 is an efficient biocatalyst for direct esterification of β-citronellol and acetic acid in an organic solvent. The biomass is effectively produced by fungal submerged culture at 20 ℃, which results in lower energy consumption during...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioenergy research 2022-03, Vol.15 (1), p.399-411
Hauptverfasser: Kutyła, Mateusz, Trytek, Mariusz, Buczek, Katarzyna, Tomaszewska, Ewa, Muszyński, Siemowit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 411
container_issue 1
container_start_page 399
container_title Bioenergy research
container_volume 15
creator Kutyła, Mateusz
Trytek, Mariusz
Buczek, Katarzyna
Tomaszewska, Ewa
Muszyński, Siemowit
description A biomass-bound lipase from psychrophilic Chrysosporium pannorum A-1 is an efficient biocatalyst for direct esterification of β-citronellol and acetic acid in an organic solvent. The biomass is effectively produced by fungal submerged culture at 20 ℃, which results in lower energy consumption during the production of biocatalyst. Supplementation of the culture medium with calcium carbonate together with olive oil contributed to a significant increase in the active biomass of mycelium in one batch culture and increased the efficiency of the biocatalyst. Biomass-bound lipase showed high catalytic activity in a broad temperature range of 30–60 °C and stability up to 70 °C. A maximum molar conversion value of 98% was obtained at 30 °C in n -hexane using a 2:1 alcohol-to-acid molar ratio and 3% w/v of the biocatalyst within 24 h. The high equimolar concentration of the substrates (200 mM) did not have an adverse effect on mycelial biomass activity. Dry mycelium of C. pannorum is a promising biocatalyst for large-scale biosynthesis of citronellyl acetate, given its low-cost production, high activity at low temperatures, and reusability in a minimum of seven 24-h biocatalytic cycles.
doi_str_mv 10.1007/s12155-021-10289-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2646018984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A706377109</galeid><sourcerecordid>A706377109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-3e3f51c76e9543d072e650b6464bdceeab0c1eb9ccf32a17a0d565fcd7615f993</originalsourceid><addsrcrecordid>eNp9kU9LAzEQxRdRsFa_gKeA562TZP80x1pbFQQ96Dmk2Umbst3UJIX225tasQgiE5gwvN-bhJdl1xQGFKC-DZTRssyB0ZwCG4p8e5L1qOAip6xgpz93XpxnFyEsASooQPQyvLNupUIgzhBFXsNOL7xbL2xrNZluuvkmEJUOSTKtomp3IRLjPJkYY7XFLpJ761FHMgkRvU1DFa3r9nZjG73rsG1de5mdGdUGvPru_ex9OnkbP-bPLw9P49FzrgsOMefITUl1XaEoC95AzbAqYVYVVTFrNKKagaY4E1obzhStFTRlVRrd1BUtjRC8n90cfNfefWwwRLl0G9-llZIlF6BDMSyOqrlqUdrOuOiVXtmg5aiGitc1hb3X4A9VqgZXVqePGZvmvwB2ALR3IXg0cu3tSvmdpCD3KclDSjKlJL9SktsE8QMUkriboz---B_qE26mlQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646018984</pqid></control><display><type>article</type><title>Biomass of a Psychrophilic Fungus as a Biocatalyst for Efficient Direct Esterification of Citronellol</title><source>SpringerLink Journals</source><creator>Kutyła, Mateusz ; Trytek, Mariusz ; Buczek, Katarzyna ; Tomaszewska, Ewa ; Muszyński, Siemowit</creator><creatorcontrib>Kutyła, Mateusz ; Trytek, Mariusz ; Buczek, Katarzyna ; Tomaszewska, Ewa ; Muszyński, Siemowit</creatorcontrib><description>A biomass-bound lipase from psychrophilic Chrysosporium pannorum A-1 is an efficient biocatalyst for direct esterification of β-citronellol and acetic acid in an organic solvent. The biomass is effectively produced by fungal submerged culture at 20 ℃, which results in lower energy consumption during the production of biocatalyst. Supplementation of the culture medium with calcium carbonate together with olive oil contributed to a significant increase in the active biomass of mycelium in one batch culture and increased the efficiency of the biocatalyst. Biomass-bound lipase showed high catalytic activity in a broad temperature range of 30–60 °C and stability up to 70 °C. A maximum molar conversion value of 98% was obtained at 30 °C in n -hexane using a 2:1 alcohol-to-acid molar ratio and 3% w/v of the biocatalyst within 24 h. The high equimolar concentration of the substrates (200 mM) did not have an adverse effect on mycelial biomass activity. Dry mycelium of C. pannorum is a promising biocatalyst for large-scale biosynthesis of citronellyl acetate, given its low-cost production, high activity at low temperatures, and reusability in a minimum of seven 24-h biocatalytic cycles.</description><identifier>ISSN: 1939-1234</identifier><identifier>EISSN: 1939-1242</identifier><identifier>DOI: 10.1007/s12155-021-10289-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acetates ; Acetic acid ; Batch culture ; Biocatalysts ; Biomass ; Biomedical and Life Sciences ; Biosynthesis ; Calcium carbonate ; Catalytic activity ; Citronellol ; Citronellyl acetate ; Energy consumption ; Esterification ; Fungi ; Hexanes ; Life Sciences ; Lipase ; Low temperature ; Mycelia ; n-Hexane ; Olive oil ; Organic acids ; Physiological aspects ; Plant Breeding/Biotechnology ; Plant Ecology ; Plant Genetics and Genomics ; Plant Sciences ; Substrates ; Wood Science &amp; Technology</subject><ispartof>Bioenergy research, 2022-03, Vol.15 (1), p.399-411</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-3e3f51c76e9543d072e650b6464bdceeab0c1eb9ccf32a17a0d565fcd7615f993</citedby><cites>FETCH-LOGICAL-c430t-3e3f51c76e9543d072e650b6464bdceeab0c1eb9ccf32a17a0d565fcd7615f993</cites><orcidid>0000-0002-4656-7737</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12155-021-10289-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12155-021-10289-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kutyła, Mateusz</creatorcontrib><creatorcontrib>Trytek, Mariusz</creatorcontrib><creatorcontrib>Buczek, Katarzyna</creatorcontrib><creatorcontrib>Tomaszewska, Ewa</creatorcontrib><creatorcontrib>Muszyński, Siemowit</creatorcontrib><title>Biomass of a Psychrophilic Fungus as a Biocatalyst for Efficient Direct Esterification of Citronellol</title><title>Bioenergy research</title><addtitle>Bioenerg. Res</addtitle><description>A biomass-bound lipase from psychrophilic Chrysosporium pannorum A-1 is an efficient biocatalyst for direct esterification of β-citronellol and acetic acid in an organic solvent. The biomass is effectively produced by fungal submerged culture at 20 ℃, which results in lower energy consumption during the production of biocatalyst. Supplementation of the culture medium with calcium carbonate together with olive oil contributed to a significant increase in the active biomass of mycelium in one batch culture and increased the efficiency of the biocatalyst. Biomass-bound lipase showed high catalytic activity in a broad temperature range of 30–60 °C and stability up to 70 °C. A maximum molar conversion value of 98% was obtained at 30 °C in n -hexane using a 2:1 alcohol-to-acid molar ratio and 3% w/v of the biocatalyst within 24 h. The high equimolar concentration of the substrates (200 mM) did not have an adverse effect on mycelial biomass activity. Dry mycelium of C. pannorum is a promising biocatalyst for large-scale biosynthesis of citronellyl acetate, given its low-cost production, high activity at low temperatures, and reusability in a minimum of seven 24-h biocatalytic cycles.</description><subject>Acetates</subject><subject>Acetic acid</subject><subject>Batch culture</subject><subject>Biocatalysts</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Calcium carbonate</subject><subject>Catalytic activity</subject><subject>Citronellol</subject><subject>Citronellyl acetate</subject><subject>Energy consumption</subject><subject>Esterification</subject><subject>Fungi</subject><subject>Hexanes</subject><subject>Life Sciences</subject><subject>Lipase</subject><subject>Low temperature</subject><subject>Mycelia</subject><subject>n-Hexane</subject><subject>Olive oil</subject><subject>Organic acids</subject><subject>Physiological aspects</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Ecology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Sciences</subject><subject>Substrates</subject><subject>Wood Science &amp; Technology</subject><issn>1939-1234</issn><issn>1939-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9LAzEQxRdRsFa_gKeA562TZP80x1pbFQQ96Dmk2Umbst3UJIX225tasQgiE5gwvN-bhJdl1xQGFKC-DZTRssyB0ZwCG4p8e5L1qOAip6xgpz93XpxnFyEsASooQPQyvLNupUIgzhBFXsNOL7xbL2xrNZluuvkmEJUOSTKtomp3IRLjPJkYY7XFLpJ761FHMgkRvU1DFa3r9nZjG73rsG1de5mdGdUGvPru_ex9OnkbP-bPLw9P49FzrgsOMefITUl1XaEoC95AzbAqYVYVVTFrNKKagaY4E1obzhStFTRlVRrd1BUtjRC8n90cfNfefWwwRLl0G9-llZIlF6BDMSyOqrlqUdrOuOiVXtmg5aiGitc1hb3X4A9VqgZXVqePGZvmvwB2ALR3IXg0cu3tSvmdpCD3KclDSjKlJL9SktsE8QMUkriboz---B_qE26mlQU</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Kutyła, Mateusz</creator><creator>Trytek, Mariusz</creator><creator>Buczek, Katarzyna</creator><creator>Tomaszewska, Ewa</creator><creator>Muszyński, Siemowit</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4656-7737</orcidid></search><sort><creationdate>20220301</creationdate><title>Biomass of a Psychrophilic Fungus as a Biocatalyst for Efficient Direct Esterification of Citronellol</title><author>Kutyła, Mateusz ; Trytek, Mariusz ; Buczek, Katarzyna ; Tomaszewska, Ewa ; Muszyński, Siemowit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-3e3f51c76e9543d072e650b6464bdceeab0c1eb9ccf32a17a0d565fcd7615f993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetates</topic><topic>Acetic acid</topic><topic>Batch culture</topic><topic>Biocatalysts</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Calcium carbonate</topic><topic>Catalytic activity</topic><topic>Citronellol</topic><topic>Citronellyl acetate</topic><topic>Energy consumption</topic><topic>Esterification</topic><topic>Fungi</topic><topic>Hexanes</topic><topic>Life Sciences</topic><topic>Lipase</topic><topic>Low temperature</topic><topic>Mycelia</topic><topic>n-Hexane</topic><topic>Olive oil</topic><topic>Organic acids</topic><topic>Physiological aspects</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Ecology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Sciences</topic><topic>Substrates</topic><topic>Wood Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kutyła, Mateusz</creatorcontrib><creatorcontrib>Trytek, Mariusz</creatorcontrib><creatorcontrib>Buczek, Katarzyna</creatorcontrib><creatorcontrib>Tomaszewska, Ewa</creatorcontrib><creatorcontrib>Muszyński, Siemowit</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Bioenergy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kutyła, Mateusz</au><au>Trytek, Mariusz</au><au>Buczek, Katarzyna</au><au>Tomaszewska, Ewa</au><au>Muszyński, Siemowit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomass of a Psychrophilic Fungus as a Biocatalyst for Efficient Direct Esterification of Citronellol</atitle><jtitle>Bioenergy research</jtitle><stitle>Bioenerg. Res</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>15</volume><issue>1</issue><spage>399</spage><epage>411</epage><pages>399-411</pages><issn>1939-1234</issn><eissn>1939-1242</eissn><abstract>A biomass-bound lipase from psychrophilic Chrysosporium pannorum A-1 is an efficient biocatalyst for direct esterification of β-citronellol and acetic acid in an organic solvent. The biomass is effectively produced by fungal submerged culture at 20 ℃, which results in lower energy consumption during the production of biocatalyst. Supplementation of the culture medium with calcium carbonate together with olive oil contributed to a significant increase in the active biomass of mycelium in one batch culture and increased the efficiency of the biocatalyst. Biomass-bound lipase showed high catalytic activity in a broad temperature range of 30–60 °C and stability up to 70 °C. A maximum molar conversion value of 98% was obtained at 30 °C in n -hexane using a 2:1 alcohol-to-acid molar ratio and 3% w/v of the biocatalyst within 24 h. The high equimolar concentration of the substrates (200 mM) did not have an adverse effect on mycelial biomass activity. Dry mycelium of C. pannorum is a promising biocatalyst for large-scale biosynthesis of citronellyl acetate, given its low-cost production, high activity at low temperatures, and reusability in a minimum of seven 24-h biocatalytic cycles.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12155-021-10289-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4656-7737</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1234
ispartof Bioenergy research, 2022-03, Vol.15 (1), p.399-411
issn 1939-1234
1939-1242
language eng
recordid cdi_proquest_journals_2646018984
source SpringerLink Journals
subjects Acetates
Acetic acid
Batch culture
Biocatalysts
Biomass
Biomedical and Life Sciences
Biosynthesis
Calcium carbonate
Catalytic activity
Citronellol
Citronellyl acetate
Energy consumption
Esterification
Fungi
Hexanes
Life Sciences
Lipase
Low temperature
Mycelia
n-Hexane
Olive oil
Organic acids
Physiological aspects
Plant Breeding/Biotechnology
Plant Ecology
Plant Genetics and Genomics
Plant Sciences
Substrates
Wood Science & Technology
title Biomass of a Psychrophilic Fungus as a Biocatalyst for Efficient Direct Esterification of Citronellol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomass%20of%20a%20Psychrophilic%20Fungus%20as%20a%20Biocatalyst%20for%20Efficient%20Direct%20Esterification%20of%20Citronellol&rft.jtitle=Bioenergy%20research&rft.au=Kuty%C5%82a,%20Mateusz&rft.date=2022-03-01&rft.volume=15&rft.issue=1&rft.spage=399&rft.epage=411&rft.pages=399-411&rft.issn=1939-1234&rft.eissn=1939-1242&rft_id=info:doi/10.1007/s12155-021-10289-x&rft_dat=%3Cgale_proqu%3EA706377109%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646018984&rft_id=info:pmid/&rft_galeid=A706377109&rfr_iscdi=true