Biomass of a Psychrophilic Fungus as a Biocatalyst for Efficient Direct Esterification of Citronellol
A biomass-bound lipase from psychrophilic Chrysosporium pannorum A-1 is an efficient biocatalyst for direct esterification of β-citronellol and acetic acid in an organic solvent. The biomass is effectively produced by fungal submerged culture at 20 ℃, which results in lower energy consumption during...
Gespeichert in:
Veröffentlicht in: | Bioenergy research 2022-03, Vol.15 (1), p.399-411 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 411 |
---|---|
container_issue | 1 |
container_start_page | 399 |
container_title | Bioenergy research |
container_volume | 15 |
creator | Kutyła, Mateusz Trytek, Mariusz Buczek, Katarzyna Tomaszewska, Ewa Muszyński, Siemowit |
description | A biomass-bound lipase from psychrophilic
Chrysosporium pannorum
A-1 is an efficient biocatalyst for direct esterification of β-citronellol and acetic acid in an organic solvent. The biomass is effectively produced by fungal submerged culture at 20 ℃, which results in lower energy consumption during the production of biocatalyst. Supplementation of the culture medium with calcium carbonate together with olive oil contributed to a significant increase in the active biomass of mycelium in one batch culture and increased the efficiency of the biocatalyst. Biomass-bound lipase showed high catalytic activity in a broad temperature range of 30–60 °C and stability up to 70 °C. A maximum molar conversion value of 98% was obtained at 30 °C in
n
-hexane using a 2:1 alcohol-to-acid molar ratio and 3% w/v of the biocatalyst within 24 h. The high equimolar concentration of the substrates (200 mM) did not have an adverse effect on mycelial biomass activity. Dry mycelium of
C. pannorum
is a promising biocatalyst for large-scale biosynthesis of citronellyl acetate, given its low-cost production, high activity at low temperatures, and reusability in a minimum of seven 24-h biocatalytic cycles. |
doi_str_mv | 10.1007/s12155-021-10289-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2646018984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A706377109</galeid><sourcerecordid>A706377109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-3e3f51c76e9543d072e650b6464bdceeab0c1eb9ccf32a17a0d565fcd7615f993</originalsourceid><addsrcrecordid>eNp9kU9LAzEQxRdRsFa_gKeA562TZP80x1pbFQQ96Dmk2Umbst3UJIX225tasQgiE5gwvN-bhJdl1xQGFKC-DZTRssyB0ZwCG4p8e5L1qOAip6xgpz93XpxnFyEsASooQPQyvLNupUIgzhBFXsNOL7xbL2xrNZluuvkmEJUOSTKtomp3IRLjPJkYY7XFLpJ761FHMgkRvU1DFa3r9nZjG73rsG1de5mdGdUGvPru_ex9OnkbP-bPLw9P49FzrgsOMefITUl1XaEoC95AzbAqYVYVVTFrNKKagaY4E1obzhStFTRlVRrd1BUtjRC8n90cfNfefWwwRLl0G9-llZIlF6BDMSyOqrlqUdrOuOiVXtmg5aiGitc1hb3X4A9VqgZXVqePGZvmvwB2ALR3IXg0cu3tSvmdpCD3KclDSjKlJL9SktsE8QMUkriboz---B_qE26mlQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646018984</pqid></control><display><type>article</type><title>Biomass of a Psychrophilic Fungus as a Biocatalyst for Efficient Direct Esterification of Citronellol</title><source>SpringerLink Journals</source><creator>Kutyła, Mateusz ; Trytek, Mariusz ; Buczek, Katarzyna ; Tomaszewska, Ewa ; Muszyński, Siemowit</creator><creatorcontrib>Kutyła, Mateusz ; Trytek, Mariusz ; Buczek, Katarzyna ; Tomaszewska, Ewa ; Muszyński, Siemowit</creatorcontrib><description>A biomass-bound lipase from psychrophilic
Chrysosporium pannorum
A-1 is an efficient biocatalyst for direct esterification of β-citronellol and acetic acid in an organic solvent. The biomass is effectively produced by fungal submerged culture at 20 ℃, which results in lower energy consumption during the production of biocatalyst. Supplementation of the culture medium with calcium carbonate together with olive oil contributed to a significant increase in the active biomass of mycelium in one batch culture and increased the efficiency of the biocatalyst. Biomass-bound lipase showed high catalytic activity in a broad temperature range of 30–60 °C and stability up to 70 °C. A maximum molar conversion value of 98% was obtained at 30 °C in
n
-hexane using a 2:1 alcohol-to-acid molar ratio and 3% w/v of the biocatalyst within 24 h. The high equimolar concentration of the substrates (200 mM) did not have an adverse effect on mycelial biomass activity. Dry mycelium of
C. pannorum
is a promising biocatalyst for large-scale biosynthesis of citronellyl acetate, given its low-cost production, high activity at low temperatures, and reusability in a minimum of seven 24-h biocatalytic cycles.</description><identifier>ISSN: 1939-1234</identifier><identifier>EISSN: 1939-1242</identifier><identifier>DOI: 10.1007/s12155-021-10289-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acetates ; Acetic acid ; Batch culture ; Biocatalysts ; Biomass ; Biomedical and Life Sciences ; Biosynthesis ; Calcium carbonate ; Catalytic activity ; Citronellol ; Citronellyl acetate ; Energy consumption ; Esterification ; Fungi ; Hexanes ; Life Sciences ; Lipase ; Low temperature ; Mycelia ; n-Hexane ; Olive oil ; Organic acids ; Physiological aspects ; Plant Breeding/Biotechnology ; Plant Ecology ; Plant Genetics and Genomics ; Plant Sciences ; Substrates ; Wood Science & Technology</subject><ispartof>Bioenergy research, 2022-03, Vol.15 (1), p.399-411</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-3e3f51c76e9543d072e650b6464bdceeab0c1eb9ccf32a17a0d565fcd7615f993</citedby><cites>FETCH-LOGICAL-c430t-3e3f51c76e9543d072e650b6464bdceeab0c1eb9ccf32a17a0d565fcd7615f993</cites><orcidid>0000-0002-4656-7737</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12155-021-10289-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12155-021-10289-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kutyła, Mateusz</creatorcontrib><creatorcontrib>Trytek, Mariusz</creatorcontrib><creatorcontrib>Buczek, Katarzyna</creatorcontrib><creatorcontrib>Tomaszewska, Ewa</creatorcontrib><creatorcontrib>Muszyński, Siemowit</creatorcontrib><title>Biomass of a Psychrophilic Fungus as a Biocatalyst for Efficient Direct Esterification of Citronellol</title><title>Bioenergy research</title><addtitle>Bioenerg. Res</addtitle><description>A biomass-bound lipase from psychrophilic
Chrysosporium pannorum
A-1 is an efficient biocatalyst for direct esterification of β-citronellol and acetic acid in an organic solvent. The biomass is effectively produced by fungal submerged culture at 20 ℃, which results in lower energy consumption during the production of biocatalyst. Supplementation of the culture medium with calcium carbonate together with olive oil contributed to a significant increase in the active biomass of mycelium in one batch culture and increased the efficiency of the biocatalyst. Biomass-bound lipase showed high catalytic activity in a broad temperature range of 30–60 °C and stability up to 70 °C. A maximum molar conversion value of 98% was obtained at 30 °C in
n
-hexane using a 2:1 alcohol-to-acid molar ratio and 3% w/v of the biocatalyst within 24 h. The high equimolar concentration of the substrates (200 mM) did not have an adverse effect on mycelial biomass activity. Dry mycelium of
C. pannorum
is a promising biocatalyst for large-scale biosynthesis of citronellyl acetate, given its low-cost production, high activity at low temperatures, and reusability in a minimum of seven 24-h biocatalytic cycles.</description><subject>Acetates</subject><subject>Acetic acid</subject><subject>Batch culture</subject><subject>Biocatalysts</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Calcium carbonate</subject><subject>Catalytic activity</subject><subject>Citronellol</subject><subject>Citronellyl acetate</subject><subject>Energy consumption</subject><subject>Esterification</subject><subject>Fungi</subject><subject>Hexanes</subject><subject>Life Sciences</subject><subject>Lipase</subject><subject>Low temperature</subject><subject>Mycelia</subject><subject>n-Hexane</subject><subject>Olive oil</subject><subject>Organic acids</subject><subject>Physiological aspects</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Ecology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Sciences</subject><subject>Substrates</subject><subject>Wood Science & Technology</subject><issn>1939-1234</issn><issn>1939-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9LAzEQxRdRsFa_gKeA562TZP80x1pbFQQ96Dmk2Umbst3UJIX225tasQgiE5gwvN-bhJdl1xQGFKC-DZTRssyB0ZwCG4p8e5L1qOAip6xgpz93XpxnFyEsASooQPQyvLNupUIgzhBFXsNOL7xbL2xrNZluuvkmEJUOSTKtomp3IRLjPJkYY7XFLpJ761FHMgkRvU1DFa3r9nZjG73rsG1de5mdGdUGvPru_ex9OnkbP-bPLw9P49FzrgsOMefITUl1XaEoC95AzbAqYVYVVTFrNKKagaY4E1obzhStFTRlVRrd1BUtjRC8n90cfNfefWwwRLl0G9-llZIlF6BDMSyOqrlqUdrOuOiVXtmg5aiGitc1hb3X4A9VqgZXVqePGZvmvwB2ALR3IXg0cu3tSvmdpCD3KclDSjKlJL9SktsE8QMUkriboz---B_qE26mlQU</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Kutyła, Mateusz</creator><creator>Trytek, Mariusz</creator><creator>Buczek, Katarzyna</creator><creator>Tomaszewska, Ewa</creator><creator>Muszyński, Siemowit</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4656-7737</orcidid></search><sort><creationdate>20220301</creationdate><title>Biomass of a Psychrophilic Fungus as a Biocatalyst for Efficient Direct Esterification of Citronellol</title><author>Kutyła, Mateusz ; Trytek, Mariusz ; Buczek, Katarzyna ; Tomaszewska, Ewa ; Muszyński, Siemowit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-3e3f51c76e9543d072e650b6464bdceeab0c1eb9ccf32a17a0d565fcd7615f993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetates</topic><topic>Acetic acid</topic><topic>Batch culture</topic><topic>Biocatalysts</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Calcium carbonate</topic><topic>Catalytic activity</topic><topic>Citronellol</topic><topic>Citronellyl acetate</topic><topic>Energy consumption</topic><topic>Esterification</topic><topic>Fungi</topic><topic>Hexanes</topic><topic>Life Sciences</topic><topic>Lipase</topic><topic>Low temperature</topic><topic>Mycelia</topic><topic>n-Hexane</topic><topic>Olive oil</topic><topic>Organic acids</topic><topic>Physiological aspects</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Ecology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Sciences</topic><topic>Substrates</topic><topic>Wood Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kutyła, Mateusz</creatorcontrib><creatorcontrib>Trytek, Mariusz</creatorcontrib><creatorcontrib>Buczek, Katarzyna</creatorcontrib><creatorcontrib>Tomaszewska, Ewa</creatorcontrib><creatorcontrib>Muszyński, Siemowit</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Bioenergy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kutyła, Mateusz</au><au>Trytek, Mariusz</au><au>Buczek, Katarzyna</au><au>Tomaszewska, Ewa</au><au>Muszyński, Siemowit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomass of a Psychrophilic Fungus as a Biocatalyst for Efficient Direct Esterification of Citronellol</atitle><jtitle>Bioenergy research</jtitle><stitle>Bioenerg. Res</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>15</volume><issue>1</issue><spage>399</spage><epage>411</epage><pages>399-411</pages><issn>1939-1234</issn><eissn>1939-1242</eissn><abstract>A biomass-bound lipase from psychrophilic
Chrysosporium pannorum
A-1 is an efficient biocatalyst for direct esterification of β-citronellol and acetic acid in an organic solvent. The biomass is effectively produced by fungal submerged culture at 20 ℃, which results in lower energy consumption during the production of biocatalyst. Supplementation of the culture medium with calcium carbonate together with olive oil contributed to a significant increase in the active biomass of mycelium in one batch culture and increased the efficiency of the biocatalyst. Biomass-bound lipase showed high catalytic activity in a broad temperature range of 30–60 °C and stability up to 70 °C. A maximum molar conversion value of 98% was obtained at 30 °C in
n
-hexane using a 2:1 alcohol-to-acid molar ratio and 3% w/v of the biocatalyst within 24 h. The high equimolar concentration of the substrates (200 mM) did not have an adverse effect on mycelial biomass activity. Dry mycelium of
C. pannorum
is a promising biocatalyst for large-scale biosynthesis of citronellyl acetate, given its low-cost production, high activity at low temperatures, and reusability in a minimum of seven 24-h biocatalytic cycles.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12155-021-10289-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4656-7737</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1234 |
ispartof | Bioenergy research, 2022-03, Vol.15 (1), p.399-411 |
issn | 1939-1234 1939-1242 |
language | eng |
recordid | cdi_proquest_journals_2646018984 |
source | SpringerLink Journals |
subjects | Acetates Acetic acid Batch culture Biocatalysts Biomass Biomedical and Life Sciences Biosynthesis Calcium carbonate Catalytic activity Citronellol Citronellyl acetate Energy consumption Esterification Fungi Hexanes Life Sciences Lipase Low temperature Mycelia n-Hexane Olive oil Organic acids Physiological aspects Plant Breeding/Biotechnology Plant Ecology Plant Genetics and Genomics Plant Sciences Substrates Wood Science & Technology |
title | Biomass of a Psychrophilic Fungus as a Biocatalyst for Efficient Direct Esterification of Citronellol |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomass%20of%20a%20Psychrophilic%20Fungus%20as%20a%20Biocatalyst%20for%20Efficient%20Direct%20Esterification%20of%20Citronellol&rft.jtitle=Bioenergy%20research&rft.au=Kuty%C5%82a,%20Mateusz&rft.date=2022-03-01&rft.volume=15&rft.issue=1&rft.spage=399&rft.epage=411&rft.pages=399-411&rft.issn=1939-1234&rft.eissn=1939-1242&rft_id=info:doi/10.1007/s12155-021-10289-x&rft_dat=%3Cgale_proqu%3EA706377109%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646018984&rft_id=info:pmid/&rft_galeid=A706377109&rfr_iscdi=true |