Biomass of a Psychrophilic Fungus as a Biocatalyst for Efficient Direct Esterification of Citronellol
A biomass-bound lipase from psychrophilic Chrysosporium pannorum A-1 is an efficient biocatalyst for direct esterification of β-citronellol and acetic acid in an organic solvent. The biomass is effectively produced by fungal submerged culture at 20 ℃, which results in lower energy consumption during...
Gespeichert in:
Veröffentlicht in: | Bioenergy research 2022-03, Vol.15 (1), p.399-411 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A biomass-bound lipase from psychrophilic
Chrysosporium pannorum
A-1 is an efficient biocatalyst for direct esterification of β-citronellol and acetic acid in an organic solvent. The biomass is effectively produced by fungal submerged culture at 20 ℃, which results in lower energy consumption during the production of biocatalyst. Supplementation of the culture medium with calcium carbonate together with olive oil contributed to a significant increase in the active biomass of mycelium in one batch culture and increased the efficiency of the biocatalyst. Biomass-bound lipase showed high catalytic activity in a broad temperature range of 30–60 °C and stability up to 70 °C. A maximum molar conversion value of 98% was obtained at 30 °C in
n
-hexane using a 2:1 alcohol-to-acid molar ratio and 3% w/v of the biocatalyst within 24 h. The high equimolar concentration of the substrates (200 mM) did not have an adverse effect on mycelial biomass activity. Dry mycelium of
C. pannorum
is a promising biocatalyst for large-scale biosynthesis of citronellyl acetate, given its low-cost production, high activity at low temperatures, and reusability in a minimum of seven 24-h biocatalytic cycles. |
---|---|
ISSN: | 1939-1234 1939-1242 |
DOI: | 10.1007/s12155-021-10289-x |