Spatio-Temporal Graph Convolutional Neural Networks for Physics-Aware Grid Learning Algorithms

This paper proposes a model-free Volt-VAR control (VVC) algorithm via the spatio-temporal graph ConvNet-based deep reinforcement learning (STGCN-DRL) framework, whose goal is to control smart inverters in an unbalanced distribution system. We first identify the graph shift operator (GSO) based on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-04
Hauptverfasser: Wu, Tong, Ignacio Losada Carreno, Scaglione, Anna, Arnold, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a model-free Volt-VAR control (VVC) algorithm via the spatio-temporal graph ConvNet-based deep reinforcement learning (STGCN-DRL) framework, whose goal is to control smart inverters in an unbalanced distribution system. We first identify the graph shift operator (GSO) based on the power flow equations. Then, we develop a spatio-temporal graph ConvNet (STGCN), testing both recurrent graph ConvNets (RGCN) and convolutional graph ConvNets (CGCN) architectures, aimed at capturing the spatiotemporal correlation of voltage phasors. The STGCN layer performs the feature extraction task for the policy function and the value function of the reinforcement learning architecture, and then we utilize the proximal policy optimization (PPO) to search the action spaces for an optimum policy function and to approximate an optimum value function. We further utilize the low-pass property of voltage graph signal to introduce an GCN architecture for the the policy whose input is a decimated state vector, i.e. a partial observation. Case studies on the unbalanced 123-bus systems validate the excellent performance of the proposed method in mitigating instabilities and maintaining nodal voltage profiles within a desirable range.
ISSN:2331-8422