Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection System

Human fall detection (FD) acts as an important part in creating sensor based alarm system, enabling physical therapists to minimize the effect of fall events and save human lives. Generally, elderly people suffer from several diseases, and fall action is a common situation which can occur at any tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua materials & continua, 2022, Vol.72 (2), p.2713-2727
Hauptverfasser: Saleh Alluhaidan, Ala, Alajmi, Masoud, N. Al-Wesabi, Fahd, Mustafa Hilal, Anwer, Ahmed Hamza, Manar, Motwakel, Abdelwahed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human fall detection (FD) acts as an important part in creating sensor based alarm system, enabling physical therapists to minimize the effect of fall events and save human lives. Generally, elderly people suffer from several diseases, and fall action is a common situation which can occur at any time. In this view, this paper presents an Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection (IAOA-DLFD) model to identify the fall/non-fall events. The proposed IAOA-DLFD technique comprises different levels of pre-processing to improve the input image quality. Besides, the IAOA with Capsule Network based feature extractor is derived to produce an optimal set of feature vectors. In addition, the IAOA uses to significantly boost the overall FD performance by optimal choice of CapsNet hyperparameters. Lastly, radial basis function (RBF) network is applied for determining the proper class labels of the test images. To showcase the enhanced performance of the IAOA-DLFD technique, a wide range of experiments are executed and the outcomes stated the enhanced detection outcome of the IAOA-DLFD approach over the recent methods with the accuracy of 0.997.
ISSN:1546-2226
1546-2218
1546-2226
DOI:10.32604/cmc.2022.025202