Hybrid Machine Learning Model for Face Recognition Using SVM

Face recognition systems have enhanced human-computer interactions in the last ten years. However, the literature reveals that current techniques used for identifying or verifying faces are not immune to limitations. Principal Component Analysis-Support Vector Machine (PCA-SVM) and Principal Compone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua materials & continua, 2022, Vol.72 (2), p.2697-2712
Hauptverfasser: Kumar Yadav, Anil, K. Pateriya, R., Kumar Gupta, Nirmal, Gupta, Punit, Kumar Saini, Dinesh, Alahmadi, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Face recognition systems have enhanced human-computer interactions in the last ten years. However, the literature reveals that current techniques used for identifying or verifying faces are not immune to limitations. Principal Component Analysis-Support Vector Machine (PCA-SVM) and Principal Component Analysis-Artificial Neural Network (PCA-ANN) are among the relatively recent and powerful face analysis techniques. Compared to PCA-ANN, PCA-SVM has demonstrated generalization capabilities in many tasks, including the ability to recognize objects with small or large data samples. Apart from requiring a minimal number of parameters in face detection, PCA-SVM minimizes generalization errors and avoids overfitting problems better than PCA-ANN. PCA-SVM, however, is ineffective and inefficient in detecting human faces in cases in which there is poor lighting, long hair, or items covering the subject's face. This study proposes a novel PCA-SVM-based model to overcome the recognition problem of PCA-ANN and enhance face detection. The experimental results indicate that the proposed model provides a better face recognition outcome than PCA-SVM.
ISSN:1546-2226
1546-2218
1546-2226
DOI:10.32604/cmc.2022.023052