The co-secure domination in proper interval graphs

A set S⊂V is a co-secure dominating set of a graph G=(V,E) if S is a dominating set, and for each u∈S there exists a vertex v∈V∖S such that uv∈E and (S∖{u})∪{v} is a dominating set. Note that |V|>1. The minimum cardinality of a co-secure dominating set in G is the co-secure domination number of G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2022-04, Vol.311, p.68-71
Hauptverfasser: Zou, Yun-Hao, Liu, Jia-Jie, Chang, Shun-Chieh, Hsu, Chiun-Chieh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A set S⊂V is a co-secure dominating set of a graph G=(V,E) if S is a dominating set, and for each u∈S there exists a vertex v∈V∖S such that uv∈E and (S∖{u})∪{v} is a dominating set. Note that |V|>1. The minimum cardinality of a co-secure dominating set in G is the co-secure domination number of G. In this paper, we propose a linear-time algorithm for finding the co-secure domination number of proper interval graphs.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2022.01.013