The co-secure domination in proper interval graphs
A set S⊂V is a co-secure dominating set of a graph G=(V,E) if S is a dominating set, and for each u∈S there exists a vertex v∈V∖S such that uv∈E and (S∖{u})∪{v} is a dominating set. Note that |V|>1. The minimum cardinality of a co-secure dominating set in G is the co-secure domination number of G...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2022-04, Vol.311, p.68-71 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A set S⊂V is a co-secure dominating set of a graph G=(V,E) if S is a dominating set, and for each u∈S there exists a vertex v∈V∖S such that uv∈E and (S∖{u})∪{v} is a dominating set. Note that |V|>1. The minimum cardinality of a co-secure dominating set in G is the co-secure domination number of G. In this paper, we propose a linear-time algorithm for finding the co-secure domination number of proper interval graphs. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2022.01.013 |