Simulation model for energy consumption and acoustic underwater communication of autonomous underwater vehicles

Recently, cooperative autonomous underwater vehicles (AUVs) have been deployed in application areas such as surveillance and protection of maritime infrastructures for inspection and monitoring purposes. These cooperative methodologies require wireless transmission of data between the different AUVs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:WMU journal of maritime affairs 2022-03, Vol.21 (1), p.89-107
Hauptverfasser: Danielis, Peter, Parzyjegla, Helge, Ali, Mostafa Assem Mohamed, Torres, Frank Sill
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, cooperative autonomous underwater vehicles (AUVs) have been deployed in application areas such as surveillance and protection of maritime infrastructures for inspection and monitoring purposes. These cooperative methodologies require wireless transmission of data between the different AUVs operating in the underwater environment. Communication over ranges exceeding 100 m exclusively relies on underwater acoustic communication. However, the propagating acoustic waves suffer from several challenges due to the presence of path loss, multi-path propagation, the slow and variant propagation speed, background noise, and Doppler distortion. Since the power supply of the AUVs is limited, communication must be very energy efficient and energy constraints have to be known to be able to plan the mission of AUVs. Due to the difficulties of real experiments, the modeling and simulation of the energy consumption and underwater acoustic communication play an essential role in studying and developing these systems. We provide a modular simulation model for the energy consumption and acoustic underwater communication of AUVs implemented in the network simulator OMNeT++ using the INET framework. More specifically, we extend several INET modules in such a way as to reflect the characteristics of AUVs and underwater communication. We study and analyze the AUVs’ energy consumption and dependence of the message quality on different properties such as those mentioned above.
ISSN:1651-436X
1654-1642
DOI:10.1007/s13437-021-00253-z