Redshifted methanol absorption tracing infall motions of high-mass star formation regions

Context. Gravitational collapse is one of the most important processes in high-mass star formation. Compared with the classic blue-skewed profiles, redshifted absorption against continuum emission is a more reliable method to detect inward motions within high-mass star formation regions. Aims. We ai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2022-02, Vol.658, p.A192
Hauptverfasser: Yang, W. J., Menten, K. M., Yang, A. Y., Wyrowski, F., Gong, Y., Ellingsen, S. P., Henkel, C., Chen, X., Xu, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Context. Gravitational collapse is one of the most important processes in high-mass star formation. Compared with the classic blue-skewed profiles, redshifted absorption against continuum emission is a more reliable method to detect inward motions within high-mass star formation regions. Aims. We aim to test if methanol transitions can be used to trace infall motions within high-mass star formation regions. Methods. Using the Effelsberg-100 m, IRAM-30 m, and APEX-12 m telescopes, we carried out observations of 37 and 16 methanol transitions towards two well-known collapsing dense clumps, W31C (G10.6−0.4) and W3(OH), to search for redshifted absorption features or inverse P-Cygni profiles. Results. Redshifted absorption is observed in 14 and 11 methanol transitions towards W31C and W3(OH), respectively. The infall velocities fitted from a simple two-layer model agree with previously reported values derived from other tracers, suggesting that redshifted methanol absorption is a reliable tracer of infall motions within high-mass star formation regions. Our observations indicate the presence of large-scale inward motions, and the mass infall rates are roughly estimated to be ≳10 −3 M ⊙ yr −1 , which supports the global hierarchical collapse and clump-fed scenario. Conclusions. With the aid of bright continuum sources and the overcooling of methanol transitions leading to enhanced absorption, redshifted methanol absorption can trace infall motions within high-mass star formation regions hosting bright H  II regions.
ISSN:0004-6361
1432-0746
DOI:10.1051/0004-6361/202142811