GSK-3β inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila
The tauopathies are a group of disorders characterised by aggregation of the microtubule-associated protein tau and include Alzheimer's disease (AD) and the fronto-temporal dementias (FTD). We have used Drosophila to analyse how tau abnormalities cause neurodegeneration. By selectively co-expre...
Gespeichert in:
Veröffentlicht in: | Molecular psychiatry 2004-05, Vol.9 (5), p.522-530 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The tauopathies are a group of disorders characterised by aggregation of the microtubule-associated protein tau and include Alzheimer's disease (AD) and the fronto-temporal dementias (FTD). We have used
Drosophila
to analyse how tau abnormalities cause neurodegeneration. By selectively co-expressing wild-type human tau (0N3R isoform) and a GFP vesicle marker in motorneurons, we examined the consequences of tau overexpression on axonal transport
in vivo
. The results show that overexpression of tau disrupts axonal transport causing vesicle aggregation and this is associated with loss of locomotor function. All these effects occur without neuron death. Co-expression of constitutively active glycogen-synthase kinase-3
β
(GSK-3
β
) enhances and two GSK-3
β
inhibitors, lithium and AR-A014418, reverse both the axon transport and locomotor phenotypes, suggesting that the pathological effects of tau are phosphorylation dependent. These data show that tau abnormalities significantly disrupt neuronal function, in a phosphorylation-dependent manner, before the classical pathological hallmarks are evident and also suggest that the inhibition of GSK-3
β
might have potential therapeutic benefits in tauopathies. |
---|---|
ISSN: | 1359-4184 1476-5578 |
DOI: | 10.1038/sj.mp.4001483 |