Activation of FGFR1β signaling pathway promotes survival, migration and resistance to chemotherapy in acute myeloid leukemia cells

Fibroblast growth factors (FGFs) are important regulators of hematopoiesis and have been implicated in the tumorigenesis of solid tumors. Recent evidence suggests that FGF signaling through FGF receptors (FGFRs) may play a role in the proliferation of subsets of acute myeloid leukemias (AMLs). Howev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Leukemia 2006-06, Vol.20 (6), p.979-986
Hauptverfasser: KARAJANNIS, M. A, VINCENT, L, RAFII, S, DIRENZO, R, SHMELKOV, S. V, ZHANG, F, FELDMAN, E. J, BOHLEN, P, ZHU, Z, SUN, H, KUSSIE, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fibroblast growth factors (FGFs) are important regulators of hematopoiesis and have been implicated in the tumorigenesis of solid tumors. Recent evidence suggests that FGF signaling through FGF receptors (FGFRs) may play a role in the proliferation of subsets of acute myeloid leukemias (AMLs). However, the precise mechanism and specific FGF receptors that support leukemic cell growth are not known. We show that FGF-2, through activation of FGFR1β signaling, promotes survival, proliferation and migration of AML cells. Stimulation of FGFR1β results in phosphoinositide 3-kinase (PI3-K)/Akt activation and inhibits chemotherapy-induced apoptosis of leukemic cells. Neutralizing FGFR1-specific antibody abrogates the physiologic and chemoprotective effects of FGF-2/FGFR1β signaling and inhibits tumor growth in mice xenotransplanted with human AML. These data suggest that activation of FGF-2/FGFR1β supports progression and chemoresistance in subsets of AML. Therefore, FGFR1 targeting may be of therapeutic benefit in subsets of AML.
ISSN:0887-6924
1476-5551
DOI:10.1038/sj.leu.2404203