Tunable magnetically induced transparency spectra in magnon-magnon coupled Y3Fe5O12/permalloy bilayers

Hybrid magnonic systems host a variety of characteristic quantum phenomena such as the magnetically-induced transparency (MIT) and Purcell effect, which are considered useful for future coherent quantum information processing. In this work, we experimentally demonstrate a tunable MIT effect in the Y...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-03
Hauptverfasser: Xiong, Yuzan, Inman, Jerad, Li, Zhengyi, Xie, Kaile, Rao Bidthanapally, Sklenar, Joseph, Li, Peng, Louis, Steven, Tyberkevych, Vasyl, Qu, Hongwei, Xiao, Zhili, Kwok, Wai K, Novosad, Valentine, Li, Yi, Ma, Fusheng, Zhang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hybrid magnonic systems host a variety of characteristic quantum phenomena such as the magnetically-induced transparency (MIT) and Purcell effect, which are considered useful for future coherent quantum information processing. In this work, we experimentally demonstrate a tunable MIT effect in the Y3Fe5O12(YIG)/Permalloy(Py) magnon-magnon coupled system via changing the magnetic field orientations. By probing the magneto-optic effects of Py and YIG, we identify clear features of MIT spectra induced by the mode hybridization between the uniform mode of Py and the perpendicular standing spin-wave modes of YIG. By changing the external magnetic field orientations, we observe a tunable coupling strength between the YIG's spin-wave modes and the Py's uniform mode, upon the application of an out-of-plane magnetic field. This observation is theoretically interpreted by a geometrical consideration of the Py and YIG magnetization under the oblique magnetic field even at a constant interfacial exchange coupling. Our findings show high promise for investigating tunable coherent phenomena with hybrid magnonic platforms.
ISSN:2331-8422