Heterogeneous Employment Effects of Job Search Programs: A Machine Learning Approach
We systematically investigate the effect heterogeneity of job search programs for unemployed workers. To investigate possibly heterogeneous employment effects, we combine nonexperimental causal empirical models with Lassotype estimators. The empirical analyses are based on rich administrative data f...
Gespeichert in:
Veröffentlicht in: | The Journal of human resources 2022-03, Vol.57 (2), p.597-636 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We systematically investigate the effect heterogeneity of job search programs for unemployed workers. To investigate possibly heterogeneous employment effects, we combine nonexperimental causal empirical models with Lassotype estimators. The empirical analyses are based on rich administrative data from Swiss social security records. We find considerable heterogeneities during the first six months after the start of training. Consistent with previous results in the literature, unemployed persons with fewer employment opportunities profit more from participating in these programs. Finally, we show the potential of easy-to-implement program participation rules for improving average employment effects of these active labor market programs. |
---|---|
ISSN: | 0022-166X 1548-8004 |
DOI: | 10.3368/jhr.57.2.0718-9615R1 |