Example of a Highly Branching CD Space

In Ketterer and Rajala (Potential Anal 42:645–655, 2014) showed an example of metric measure space, satisfying the measure contraction property MCP ( 0 , 3 ) , that has different topological dimensions at different regions of the space. In this article I propose a refinement of that example, which s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2022-06, Vol.32 (6), Article 173
1. Verfasser: Magnabosco, Mattia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Ketterer and Rajala (Potential Anal 42:645–655, 2014) showed an example of metric measure space, satisfying the measure contraction property MCP ( 0 , 3 ) , that has different topological dimensions at different regions of the space. In this article I propose a refinement of that example, which satisfies the CD ( 0 , ∞ ) condition, proving the non-constancy of topological dimension for CD spaces. This example also shows that the weak curvature dimension bound, in the sense of Lott–Sturm–Villani, is not sufficient to deduce any reasonable non-branching condition. Moreover, it allows to answer to some open question proposed by Schultz in (Calc Var Partial Differ Equ 57:1–11, 2018), about strict curvature dimension bounds and their stability with respect to the measured Gromov–Hausdorff convergence.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-022-00912-4