Clairaut Anti-invariant Riemannian Maps from Kähler Manifolds
In this paper, we study Clairaut anti-invariant Riemannian map from a Kähler manifold to a Riemannian manifold and give non-trivial examples of such Riemannian maps. We obtain a necessary and sufficient condition for an anti-invariant Riemannian map to be Clairaut anti-invariant Riemannian map. Furt...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2022-06, Vol.19 (3), Article 97 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study Clairaut anti-invariant Riemannian map from a Kähler manifold to a Riemannian manifold and give non-trivial examples of such Riemannian maps. We obtain a necessary and sufficient condition for an anti-invariant Riemannian map to be Clairaut anti-invariant Riemannian map. Further, we establish curvature relations for total manifold and
range
F
∗
under Clairaut Lagrangian Riemannian map. We also obtain necessary and sufficient condition for vertical space
ker
F
∗
and horizontal space
(
ker
F
∗
)
⊥
to define totally geodesic foliation on the total manifold. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-022-02018-1 |