A partial uniqueness result and an asymptotically sharp nonuniqueness result for the Zhikov problem on the torus
We consider the stationary diffusion equation - div ( ∇ u + b u ) = f in d -dimensional torus T d , where f ∈ H - 1 is a given forcing and b ∈ L p is a divergence-free drift. Zhikov (Funkts Anal Prilozhen, 38(3):15–28, 2004) considered this equation in the case of a bounded, Lipschitz domain Ω ⊂ R d...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2022-06, Vol.61 (3), Article 97 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the stationary diffusion equation
-
div
(
∇
u
+
b
u
)
=
f
in
d
-dimensional torus
T
d
, where
f
∈
H
-
1
is a given forcing and
b
∈
L
p
is a divergence-free drift. Zhikov (Funkts Anal Prilozhen, 38(3):15–28, 2004) considered this equation in the case of a bounded, Lipschitz domain
Ω
⊂
R
d
, and proved existence of solutions for
b
∈
L
2
d
/
(
d
+
2
)
, uniqueness for
b
∈
L
2
, and has provided a point-singularity counterexample that shows nonuniqueness for
b
∈
L
3
/
2
-
and
d
=
3
,
4
,
5
. We apply a duality method and a DiPerna–Lions-type estimate to show uniqueness of the solutions constructed by Zhikov for
b
∈
W
1
,
1
. We use a Nash iteration to demonstrate sharpness of this result, and also show that solutions in
H
1
∩
L
p
/
(
p
-
1
)
are flexible for
b
∈
L
p
,
p
∈
[
1
,
2
(
d
-
1
)
/
(
d
+
1
)
)
; namely we show that the set of
b
∈
L
p
for which nonuniqueness in the class
H
1
∩
L
p
/
(
p
-
1
)
occurs is dense in the divergence-free subspace of
L
p
. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-022-02206-7 |