On the Univalence of Poly-analytic Functions

A continuous complex-valued function F in a domain D ⊆ C is poly-analytic of order α if it satisfies ∂ α F / ∂ z ¯ α = 0 . One can show that F has the form F ( z ) = ∑ k = 0 α - 1 z ¯ k A k ( z ) , where each A k is an analytic function. In this paper, we prove the existence of a Landau constant for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational methods and function theory 2022-03, Vol.22 (1), p.169-181
Hauptverfasser: Abdulhadi, Zayid, Hajj, Layan El
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A continuous complex-valued function F in a domain D ⊆ C is poly-analytic of order α if it satisfies ∂ α F / ∂ z ¯ α = 0 . One can show that F has the form F ( z ) = ∑ k = 0 α - 1 z ¯ k A k ( z ) , where each A k is an analytic function. In this paper, we prove the existence of a Landau constant for poly-analytic functions and the special bi-analytic case. We also establish Bohr’s inequality for poly-analytic and bi-analytic functions. In addition, we give an estimate for the arc-length over the class of poly-analytic mappings and consider the problem of minimizing moments of order p .
ISSN:1617-9447
2195-3724
DOI:10.1007/s40315-021-00378-5