On the Univalence of Poly-analytic Functions
A continuous complex-valued function F in a domain D ⊆ C is poly-analytic of order α if it satisfies ∂ α F / ∂ z ¯ α = 0 . One can show that F has the form F ( z ) = ∑ k = 0 α - 1 z ¯ k A k ( z ) , where each A k is an analytic function. In this paper, we prove the existence of a Landau constant for...
Gespeichert in:
Veröffentlicht in: | Computational methods and function theory 2022-03, Vol.22 (1), p.169-181 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A continuous complex-valued function
F
in a domain
D
⊆
C
is poly-analytic of order
α
if it satisfies
∂
α
F
/
∂
z
¯
α
=
0
. One can show that
F
has the form
F
(
z
)
=
∑
k
=
0
α
-
1
z
¯
k
A
k
(
z
)
, where each
A
k
is an analytic function. In this paper, we prove the existence of a Landau constant for poly-analytic functions and the special bi-analytic case. We also establish Bohr’s inequality for poly-analytic and bi-analytic functions. In addition, we give an estimate for the arc-length over the class of poly-analytic mappings and consider the problem of minimizing moments of order
p
. |
---|---|
ISSN: | 1617-9447 2195-3724 |
DOI: | 10.1007/s40315-021-00378-5 |