Predicting Tunnel Squeezing Using the SVM-BP Combination Model
Rock squeezing has a large influence on tunnel construction safety; thus, when designing and constructing tunnels it is highly important to use a reliable method for predicting tunnel squeezing from incomplete data. In this study, a combination SVM-BP (support vector machine-back-propagation) model...
Gespeichert in:
Veröffentlicht in: | Geotechnical and geological engineering 2022-03, Vol.40 (3), p.1387-1405 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rock squeezing has a large influence on tunnel construction safety; thus, when designing and constructing tunnels it is highly important to use a reliable method for predicting tunnel squeezing from incomplete data. In this study, a combination SVM-BP (support vector machine-back-propagation) model is proposed to classify the deformation caused by surrounding rock squeezing. We design different characteristic parameters and three types of classifiers (a SVM model, a BP model, and the proposed SVM-BP model) for the tunnel-squeezing prediction experiments and analyse the accuracy of predictions by different models and the influences of characteristic parameters on the prediction results. In contrast to other prediction methods, the proposed SVM-BP model is verified to be reliable. The results show that four characteristics: tunnel diameter (
D
), tunnel buried depth (
H
), rock quality index (
Q
) and support stiffness (
K
) reflect the effect of rock squeezing sufficiently for classification. The SVM-BP model combines the advantages of both an SVM and a BP neural network. It possesses flexible nonlinear modelling ability and the ability to perform parallel processing of large-scale information. Therefore, the SVM-BP model achieves better classification performance than do the SVM or BP models separately. Moreover, coupling
D
,
H
, and
K
has a significant impact on the predicted results of tunnel squeezing. |
---|---|
ISSN: | 0960-3182 1573-1529 |
DOI: | 10.1007/s10706-021-01970-1 |