Sparse bounds for the bilinear spherical maximal function
We derive sparse bounds for the bilinear spherical maximal function in any dimension \(d\geq 1\). When \(d\geq 2\), this immediately recovers the sharp \(L^p\times L^q\to L^r\) bound of the operator and implies quantitative weighted norm inequalities with respect to bilinear Muckenhoupt weights, whi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive sparse bounds for the bilinear spherical maximal function in any dimension \(d\geq 1\). When \(d\geq 2\), this immediately recovers the sharp \(L^p\times L^q\to L^r\) bound of the operator and implies quantitative weighted norm inequalities with respect to bilinear Muckenhoupt weights, which seems to be the first of their kind for the operator. The key innovation is a group of newly developed continuity \(L^p\) improving estimates for the single scale bilinear spherical averaging operator. |
---|---|
ISSN: | 2331-8422 |