Sparse bounds for the bilinear spherical maximal function

We derive sparse bounds for the bilinear spherical maximal function in any dimension \(d\geq 1\). When \(d\geq 2\), this immediately recovers the sharp \(L^p\times L^q\to L^r\) bound of the operator and implies quantitative weighted norm inequalities with respect to bilinear Muckenhoupt weights, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-12
Hauptverfasser: Borges, Tainara, Foster, Benjamin, Ou, Yumeng, Pipher, Jill, Zhou, Zirui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive sparse bounds for the bilinear spherical maximal function in any dimension \(d\geq 1\). When \(d\geq 2\), this immediately recovers the sharp \(L^p\times L^q\to L^r\) bound of the operator and implies quantitative weighted norm inequalities with respect to bilinear Muckenhoupt weights, which seems to be the first of their kind for the operator. The key innovation is a group of newly developed continuity \(L^p\) improving estimates for the single scale bilinear spherical averaging operator.
ISSN:2331-8422