Discounted probability of exponential parisian ruin: Diffusion approximation

We analyze the discounted probability of exponential Parisian ruin for the so-called scaled classical Cramér–Lundberg risk model. As in Cohen and Young (2020), we use the comparison method from differential equations to prove that the discounted probability of exponential Parisian ruin for the scale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2022-03, Vol.59 (1), p.17-37
Hauptverfasser: Liang, Xiaoqing, Young, Virginia R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze the discounted probability of exponential Parisian ruin for the so-called scaled classical Cramér–Lundberg risk model. As in Cohen and Young (2020), we use the comparison method from differential equations to prove that the discounted probability of exponential Parisian ruin for the scaled classical risk model converges to the corresponding discounted probability for its diffusion approximation, and we derive the rate of convergence.
ISSN:0021-9002
1475-6072
DOI:10.1017/jpr.2021.36