A Global Path Planning Algorithm for Mobile Robot in Cluttered Environments with an Improved Initial Cost Solution and Convergence Rate
Sampling-based path planning algorithms are popularly used in autonomous mobile robot navigation applications. Optimal Rapidly exploring Random Trees (RRT*) is one of the well-known sampling-based single-query path planning algorithms and it is asymptotically optimal, but its convergence is slow. To...
Gespeichert in:
Veröffentlicht in: | Arabian journal for science and engineering (2011) 2022-03, Vol.47 (3), p.3633-3647 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sampling-based path planning algorithms are popularly used in autonomous mobile robot navigation applications. Optimal Rapidly exploring Random Trees (RRT*) is one of the well-known sampling-based single-query path planning algorithms and it is asymptotically optimal, but its convergence is slow. To address the slow convergence problem of the RRT* algorithm, this paper proposes a directional RRT* algorithm called D-RRT*. The key idea of D-RRT* is to reduce the sampling space. This is achieved in this proposed work by focusing on the direction of the goal from the starting configuration through a simple elliptical heuristic formed between them. The proposed methodology is validated in two different cluttered 2D environments and compared with existing algorithms. The proposed D-RRT* path planning algorithm outperforms the RRT* in three performance measures: the initial cost solution, convergence time, and the number of nodes visited. The convergence rate of the proposed D-RRT* is improved over RRT* by 8.5% and 14.7% in the two cluttered environments considered. Also, the proposed D-RRT* algorithm is validated in a real-time environment using the TurtleBot3 robot. |
---|---|
ISSN: | 2193-567X 1319-8025 2191-4281 |
DOI: | 10.1007/s13369-021-06452-3 |