Infinitesimal deformations of some Quot schemes

Let \(E\) be a vector bundle on a smooth complex projective curve \(C\) of genus at least two. Let \(\mathcal{Q}(E,d)\) be the Quot scheme parameterizing the torsion quotients of \(E\) of degree \(d\). We compute the cohomologies of the tangent bundle \(T_{\mathcal{Q}(E,d)}\). In particular, the spa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Biswas, Indranil, Gangopadhyay, Chandranandan, Sebastian, Ronnie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Biswas, Indranil
Gangopadhyay, Chandranandan
Sebastian, Ronnie
description Let \(E\) be a vector bundle on a smooth complex projective curve \(C\) of genus at least two. Let \(\mathcal{Q}(E,d)\) be the Quot scheme parameterizing the torsion quotients of \(E\) of degree \(d\). We compute the cohomologies of the tangent bundle \(T_{\mathcal{Q}(E,d)}\). In particular, the space of infinitesimal deformations of \(\mathcal{Q}(E,d)\) is computed. Kempf and Fantechi computed the space of infinitesimal deformations of \(\mathcal{Q}(\mathcal{O}_C,d)\,=\, C^{(d)}\). We also explicitly describe the infinitesimal deformations of \(\mathcal{Q}(E,d)\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2643123230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2643123230</sourcerecordid><originalsourceid>FETCH-proquest_journals_26431232303</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOwSci-ldW91F0VFwL8VeMKXJaS55fx18AKd_-P6FKgCxrg4NwEqVIpMxBro9tC0WancN1gWXSJwfZj2S5eiH5DiIZquFPelb5qTl8SRPslFLO8xC5a9rtT2f7sdL9Yr8ziSpnzjH8KUeugZrQECD_10fXjUy-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643123230</pqid></control><display><type>article</type><title>Infinitesimal deformations of some Quot schemes</title><source>Free E- Journals</source><creator>Biswas, Indranil ; Gangopadhyay, Chandranandan ; Sebastian, Ronnie</creator><creatorcontrib>Biswas, Indranil ; Gangopadhyay, Chandranandan ; Sebastian, Ronnie</creatorcontrib><description>Let \(E\) be a vector bundle on a smooth complex projective curve \(C\) of genus at least two. Let \(\mathcal{Q}(E,d)\) be the Quot scheme parameterizing the torsion quotients of \(E\) of degree \(d\). We compute the cohomologies of the tangent bundle \(T_{\mathcal{Q}(E,d)}\). In particular, the space of infinitesimal deformations of \(\mathcal{Q}(E,d)\) is computed. Kempf and Fantechi computed the space of infinitesimal deformations of \(\mathcal{Q}(\mathcal{O}_C,d)\,=\, C^{(d)}\). We also explicitly describe the infinitesimal deformations of \(\mathcal{Q}(E,d)\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computation ; Deformation ; Quotients</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Biswas, Indranil</creatorcontrib><creatorcontrib>Gangopadhyay, Chandranandan</creatorcontrib><creatorcontrib>Sebastian, Ronnie</creatorcontrib><title>Infinitesimal deformations of some Quot schemes</title><title>arXiv.org</title><description>Let \(E\) be a vector bundle on a smooth complex projective curve \(C\) of genus at least two. Let \(\mathcal{Q}(E,d)\) be the Quot scheme parameterizing the torsion quotients of \(E\) of degree \(d\). We compute the cohomologies of the tangent bundle \(T_{\mathcal{Q}(E,d)}\). In particular, the space of infinitesimal deformations of \(\mathcal{Q}(E,d)\) is computed. Kempf and Fantechi computed the space of infinitesimal deformations of \(\mathcal{Q}(\mathcal{O}_C,d)\,=\, C^{(d)}\). We also explicitly describe the infinitesimal deformations of \(\mathcal{Q}(E,d)\).</description><subject>Computation</subject><subject>Deformation</subject><subject>Quotients</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOwSci-ldW91F0VFwL8VeMKXJaS55fx18AKd_-P6FKgCxrg4NwEqVIpMxBro9tC0WancN1gWXSJwfZj2S5eiH5DiIZquFPelb5qTl8SRPslFLO8xC5a9rtT2f7sdL9Yr8ziSpnzjH8KUeugZrQECD_10fXjUy-Q</recordid><startdate>20240207</startdate><enddate>20240207</enddate><creator>Biswas, Indranil</creator><creator>Gangopadhyay, Chandranandan</creator><creator>Sebastian, Ronnie</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240207</creationdate><title>Infinitesimal deformations of some Quot schemes</title><author>Biswas, Indranil ; Gangopadhyay, Chandranandan ; Sebastian, Ronnie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26431232303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computation</topic><topic>Deformation</topic><topic>Quotients</topic><toplevel>online_resources</toplevel><creatorcontrib>Biswas, Indranil</creatorcontrib><creatorcontrib>Gangopadhyay, Chandranandan</creatorcontrib><creatorcontrib>Sebastian, Ronnie</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biswas, Indranil</au><au>Gangopadhyay, Chandranandan</au><au>Sebastian, Ronnie</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Infinitesimal deformations of some Quot schemes</atitle><jtitle>arXiv.org</jtitle><date>2024-02-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Let \(E\) be a vector bundle on a smooth complex projective curve \(C\) of genus at least two. Let \(\mathcal{Q}(E,d)\) be the Quot scheme parameterizing the torsion quotients of \(E\) of degree \(d\). We compute the cohomologies of the tangent bundle \(T_{\mathcal{Q}(E,d)}\). In particular, the space of infinitesimal deformations of \(\mathcal{Q}(E,d)\) is computed. Kempf and Fantechi computed the space of infinitesimal deformations of \(\mathcal{Q}(\mathcal{O}_C,d)\,=\, C^{(d)}\). We also explicitly describe the infinitesimal deformations of \(\mathcal{Q}(E,d)\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2643123230
source Free E- Journals
subjects Computation
Deformation
Quotients
title Infinitesimal deformations of some Quot schemes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A56%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Infinitesimal%20deformations%20of%20some%20Quot%20schemes&rft.jtitle=arXiv.org&rft.au=Biswas,%20Indranil&rft.date=2024-02-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2643123230%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2643123230&rft_id=info:pmid/&rfr_iscdi=true