Infinitesimal deformations of some Quot schemes
Let \(E\) be a vector bundle on a smooth complex projective curve \(C\) of genus at least two. Let \(\mathcal{Q}(E,d)\) be the Quot scheme parameterizing the torsion quotients of \(E\) of degree \(d\). We compute the cohomologies of the tangent bundle \(T_{\mathcal{Q}(E,d)}\). In particular, the spa...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(E\) be a vector bundle on a smooth complex projective curve \(C\) of genus at least two. Let \(\mathcal{Q}(E,d)\) be the Quot scheme parameterizing the torsion quotients of \(E\) of degree \(d\). We compute the cohomologies of the tangent bundle \(T_{\mathcal{Q}(E,d)}\). In particular, the space of infinitesimal deformations of \(\mathcal{Q}(E,d)\) is computed. Kempf and Fantechi computed the space of infinitesimal deformations of \(\mathcal{Q}(\mathcal{O}_C,d)\,=\, C^{(d)}\). We also explicitly describe the infinitesimal deformations of \(\mathcal{Q}(E,d)\). |
---|---|
ISSN: | 2331-8422 |