Colorimetric logic gate for protamine and trypsin based on the Bpy-Cu nanozyme with laccase-like activity
A novel logic gate for protamine and trypsin was developed based on a nanozyme with laccase-like activity. It is found for the first time that the nanomaterial (Bpy-Cu) made from 4,4′-bipyridine (Bpy) and Cu2+ has significant laccase-like activity, which could oxidize the typical laccase substrate (...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. B, Chemical Chemical, 2022-04, Vol.357, p.131429, Article 131429 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel logic gate for protamine and trypsin was developed based on a nanozyme with laccase-like activity. It is found for the first time that the nanomaterial (Bpy-Cu) made from 4,4′-bipyridine (Bpy) and Cu2+ has significant laccase-like activity, which could oxidize the typical laccase substrate (2,4-dichlorophenol) and the oxidation product was coupled with 4-aminoantipyrine to form a red dye product. It is also observed that heparin (Hep) can bond to the surface of Bpy-Cu, and obviously enhanced the laccase-like activity of Bpy-Cu by showing a stronger colorimetric reaction. In addition, because of the strong interaction between heparin and protamine, the addition of protamine to the complex of Bpy-Cu/Hep caused the decrease of surface charges as well as the laccase-like activity. Furthermore, protamine could be hydrolyzed by trypsin, and the inhibited laccase-like activity of Bpy-Cu/Hep complex by protamine could be recovered by trypsin. According to the above results, a novel sensing strategy for protamine and trypsin, and an IMPLICATION logic gate was developed. This work provided a new sensing pathway for biological molecules on the basis of the controlled regulation the laccase-like activity of nanozymes.
•Laccase-like activity of Bpy-Cu was first investigated.•Heparin enhanced laccase-like activity of Bpy-Cu was observed.•Protamine and trypsin were detected with satisfactory results.•An “IMPLICATION” logic gate based on Bpy-Cu was constructed successfully. |
---|---|
ISSN: | 0925-4005 1873-3077 |
DOI: | 10.1016/j.snb.2022.131429 |