Can Nanofertilizers Mitigate Multiple Environmental Stresses for Higher Crop Productivity?
The global food production for the worldwide population mainly depends on the huge contributions of the agricultural sector. The cultivated crops of foods need various elements or nutrients to complete their growth, and these are indirectly consumed by humans. During this production, several environ...
Gespeichert in:
Veröffentlicht in: | Sustainability 2022-03, Vol.14 (6), p.3480 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The global food production for the worldwide population mainly depends on the huge contributions of the agricultural sector. The cultivated crops of foods need various elements or nutrients to complete their growth, and these are indirectly consumed by humans. During this production, several environmental constraints or stresses may cause losses in the global agricultural production. These obstacles may include abiotic and biotic stresses, which have already been studied in both individual and combined cases. However, there are very few studies on multiple stresses. On the basis of the myriad benefits of nanotechnology in agriculture, nanofertilizers (or nanonutrients) have become promising tools for agricultural sustainability. Nanofertilizers are also the proper solution to overcoming the environmental and health problems that can result from conventional fertilizers. The role of nanofertilizers has increased, especially under different environmental stresses, which can include individual, combined, and multiple stresses. The stresses are most commonly the result of nature; however, studies are still needed on the different stress levels. Nanofertilizers can play a crucial role in supporting cultivated plants under stress and in improving the plant yield, both quantitatively and qualitatively. Similar to other biological issues, many open-ended questions still require further investigation: Is the right time and era for nanofertilizers in agriculture? Will the nanofertilizers be the dominant source of nutrients in modern agriculture? Are nanofertilizers, and particularly biological synthesized ones, the magic solution for sustainable agriculture? What are the expected damages of multiple stresses on plants? |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su14063480 |