Pattern recovery by SLOPE

SLOPE is a popular method for dimensionality reduction in the high-dimensional regression. Indeed some regression coefficient estimates of SLOPE can be null (sparsity) or can be equal in absolute value (clustering). Consequently, SLOPE may eliminate irrelevant predictors and may identify groups of p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
Hauptverfasser: Bogdan, Małgorzata, Dupuis, Xavier, Graczyk, Piotr, Kołodziejek, Bartosz, Skalski, Tomasz, Tardivel, Patrick, Wilczyński, Maciej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SLOPE is a popular method for dimensionality reduction in the high-dimensional regression. Indeed some regression coefficient estimates of SLOPE can be null (sparsity) or can be equal in absolute value (clustering). Consequently, SLOPE may eliminate irrelevant predictors and may identify groups of predictors having the same influence on the vector of responses. The notion of SLOPE pattern allows to derive theoretical properties on sparsity and clustering by SLOPE. Specifically, the SLOPE pattern of a vector provides: the sign of its components (positive, negative or null), the clusters (indices of components equal in absolute value) and clusters ranking. In this article we give a necessary and sufficient condition for SLOPE pattern recovery of an unknown vector of regression coefficients.
ISSN:2331-8422