Application of neural network language models based on distributive semantics for ontological modeling of the domain

The article discusses the technology of automated formation of SKOS-ontologies for semantic modeling of the subject area, based on natural language texts analysis. The technology is based on neural network and distributive (vector) language models. A brief description of the content and formulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2022-03, Vol.2182 (1), p.12033
Hauptverfasser: Shishaev, M G, Dikovitsky, V V, Pimeshkov, V K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The article discusses the technology of automated formation of SKOS-ontologies for semantic modeling of the subject area, based on natural language texts analysis. The technology is based on neural network and distributive (vector) language models. A brief description of the content and formulation of the problem of extracting concepts and relations from natural language texts is given, the results of constructing a neural network classifier of SKOS relations using the Glove vector model, as well as an example of using the technology to construct a fragment of an applied SKOS ontology are given.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2182/1/012033