Gallic Acid Enhances the Anti-Cancer Effect of Temozolomide in Human Glioma Cell Line via Inhibition of Akt and p38-MAPK Pathway
(1) Background: Temozolomide (TMZ), an oral alkylating agent, is used to treat malignant gliomas and other difficult-to-treat tumors. TMZ can enter the cerebrospinal fluid p.o. (per os) and does not need hepatic metabolism for activation of its use as a standard chemotherapeutic regimen after surgic...
Gespeichert in:
Veröffentlicht in: | Processes 2022-03, Vol.10 (3), p.448 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | (1) Background: Temozolomide (TMZ), an oral alkylating agent, is used to treat malignant gliomas and other difficult-to-treat tumors. TMZ can enter the cerebrospinal fluid p.o. (per os) and does not need hepatic metabolism for activation of its use as a standard chemotherapeutic regimen after surgical resection of malignant glioma of the brain. However, the prognosis remains poor for most patients, and the survival rate is still unsatisfactory. Gallic acid (Ga) is a secondary metabolite existent in numerous plants. Ga shows various bioactivities, including antioxidant, anti-inflammatory, anticancer and antimicrobial effects. In this study, the latent enhanced anti-cancer efficacy of Ga in TMZ-treated U87MG cells (a human glioma line) was evaluated. (2) Methods: The U87MG cell line was cultured for 24 h. The cells were incubated with Ga alone, TMZ alone, or their combination for various time points. Cell viability and the drug combination index were evaluated by an XTT-based analysis and isobologram analysis, respectively. DNA destruction and intracellular reactive oxygen species (ROS) generation were analyzed by flow cytometer. The expression of various proteins was assessed via Western blotting. (3) Results: Compared with the action of TMZ alone or Ga alone, TMZ/Ga combination augmented the inhibition of cellular viability and apoptotic level in the U87MG glioma cell line. This enhanced anti-cancer effect correlated with the decreased expression of Bcl-2 and p-Akt, and corresponded with the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. In addition, Ga suppressed the TMZ-promoted ROS generation. (4) Conclusions: Ga can augment the anti-cancer effect of TMZ via the repression of Bcl-2 expression and Akt activation and the enhancement of the p38 MAPK pathway. Our results offer a novel probable approach for the medical treatment of malignant glioma. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr10030448 |