Bijective Cremona transformations of the plane

We study the birational self-maps of the projective plane over finite fields that induce permutations on the set of rational points. As a main result, we prove that no odd permutation arises over a non-prime finite field of characteristic two, which completes the investigation initiated by Cantat ab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Selecta mathematica (Basel, Switzerland) Switzerland), 2022-07, Vol.28 (3), Article 53
Hauptverfasser: Asgarli, Shamil, Lai, Kuan-Wen, Nakahara, Masahiro, Zimmermann, Susanna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the birational self-maps of the projective plane over finite fields that induce permutations on the set of rational points. As a main result, we prove that no odd permutation arises over a non-prime finite field of characteristic two, which completes the investigation initiated by Cantat about which permutations can be realized this way. Main ingredients in our proof include the invariance of parity under groupoid conjugations by birational maps, and a list of generators for the group of such maps.
ISSN:1022-1824
1420-9020
DOI:10.1007/s00029-022-00768-0