The hemochromatosis C282Y allele : a risk factor for hepatic veno-occlusive disease after hematopoietic stem cell transplantation

Hepatic veno-occlusive disease (HVOD) is a serious complication of hematopoietic stem cell transplantation (HSCT). Since the liver is a major site of iron deposition in HFE-associated hemochromatosis, and iron has oxidative toxicity, we hypothesized that HFE genotype might influence the risk of HVOD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bone marrow transplantation (Basingstoke) 2005-06, Vol.35 (12), p.1155-1164
Hauptverfasser: KALLIANPUR, A. R, HALL, L. D, YADAV, M, BYRNE, D. W, SPEROFF, T, DITTUS, R. S, HAINES, J. L, CHRISTMAN, B. W, SUMMAR, M. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hepatic veno-occlusive disease (HVOD) is a serious complication of hematopoietic stem cell transplantation (HSCT). Since the liver is a major site of iron deposition in HFE-associated hemochromatosis, and iron has oxidative toxicity, we hypothesized that HFE genotype might influence the risk of HVOD after myeloablative HSCT. We determined HFE genotypes in 166 HSCT recipients who were evaluated prospectively for HVOD. We also tested whether a common variant of the rate-limiting urea cycle enzyme, carbamyl-phosphate synthetase (CPS), previously observed to protect against HVOD in this cohort, modified the effect of HFE genotype. Risk of HVOD was significantly higher in carriers of at least one C282Y allele (RR=3.7, 95% CI 1.2-12.1) and increased progressively with C282Y allelic dose (RR=1.7, 95% CI 0.4-6.8 in heterozygotes; RR=8.6, 95% CI 1.5-48.5 in homozygotes). The CPS A allele, which encodes a more efficient urea cycle enzyme, reduced the risk of HVOD associated with HFE C282Y. We conclude that HFE C282Y is a risk factor for HVOD and that CPS polymorphisms may counteract its adverse effects. Knowledge of these genotypes and monitoring of iron stores may facilitate risk-stratification and testing of strategies to prevent HVOD, such as iron chelation and pharmacologic support of the urea cycle.
ISSN:0268-3369
1476-5365
DOI:10.1038/sj.bmt.1704943