Existentially closed measure-preserving actions of free groups

This paper is motivated by the study of probability measure-preserving (pmp) actions of free groups using continuous model theory. Such an action is treated as a metric structure that consists of the measure algebra of the probability measure space expanded by a family of its automorphisms. We prove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-11
Hauptverfasser: Berenstein, Alexander, C Ward Henson, Ibarlucía, Tomás
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is motivated by the study of probability measure-preserving (pmp) actions of free groups using continuous model theory. Such an action is treated as a metric structure that consists of the measure algebra of the probability measure space expanded by a family of its automorphisms. We prove that the existentially closed pmp actions of a given free group form an elementary class, and therefore the theory of pmp \(\mathbb{F}_k\)-actions has a model companion. We show this model companion is stable and has quantifier elimination. We also prove that the action of \(\mathbb{F}_k\) on its profinite completion with the Haar measure is metrically generic and therefore, as we show, it is existentially closed. We deduce our main result from a more general theorem, which gives a set of sufficient conditions for the existence of a model companion for the theory of \(\mathbb{F}_k\)-actions on a separably categorical, stable metric structure.
ISSN:2331-8422