Hamilton Cycles in Dense Regular Digraphs and Oriented Graphs
We prove that for every \(\varepsilon > 0\) there exists \(n_0=n_0(\varepsilon)\) such that every regular oriented graph on \(n > n_0\) vertices and degree at least \((1/4 + \varepsilon)n\) has a Hamilton cycle. This establishes an approximate version of a conjecture of Jackson from 1981. We a...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that for every \(\varepsilon > 0\) there exists \(n_0=n_0(\varepsilon)\) such that every regular oriented graph on \(n > n_0\) vertices and degree at least \((1/4 + \varepsilon)n\) has a Hamilton cycle. This establishes an approximate version of a conjecture of Jackson from 1981. We also establish a result related to a conjecture of K\"uhn and Osthus about the Hamiltonicity of regular directed graphs with suitable degree and connectivity conditions. |
---|---|
ISSN: | 2331-8422 |