Retinoid-suppressed phosphorylation of RARα mediates the differentiation pathway of osteosarcoma cells

Although retinoic acid (RA) is a potent agent that coordinates inhibition of proliferation with differentiation of many cell types, RA-mediated signaling pathways in osteosarcoma cell differentiation are uncharacterized. In this study, we show that in human U2OS osteosarcoma cells, decreased phospho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2010-05, Vol.29 (19), p.2772-2783
Hauptverfasser: Luo, P, Yang, X, Ying, M, Chaudhry, P, Wang, A, Shimada, H, May, W A, Adams, G B, Mock, D, Triche, T J, He, Q, Wu, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although retinoic acid (RA) is a potent agent that coordinates inhibition of proliferation with differentiation of many cell types, RA-mediated signaling pathways in osteosarcoma cell differentiation are uncharacterized. In this study, we show that in human U2OS osteosarcoma cells, decreased phosphorylation of RA receptor alpha (RARα) by RA treatment or overexpressing a phosphorylation-defective mutant RARαS77A results in the inhibition of proliferation and induction of differentiation, and that U2OS cells transduced with RARαS77A suppresses tumor formation in nude mice. Moreover, using different human primary osteosarcoma cells and human mesenchymal stem cells for gene expression analysis, we found that either RA or RARαS77A induces many of the same differentiation response pathways and signaling molecules involved in U2OS cell differentiation. In addition, overexpression of the fibroblast growth factor 8f (FGF8f), one of the downstream targets induced by both RA and RARαS77A in U2OS cells, inhibits proliferation and induces expression of osteoblastic differentiation regulators. Hence, these data strongly suggest that RA-suppressed phosphorylation of RARα induces FGF8f expression to mediate differentiation response pathway in U2OS osteosarcoma cells.
ISSN:0950-9232
1476-5594
DOI:10.1038/onc.2010.50