ISM-AC: an immune security model based on alert correlation and software-defined networking

Anomaly-based detection techniques have a high number of false positives, which degrades the detection performance. To address this issue, we propose a distributed intrusion detection system, named ISM-AC, based on anomaly detection using artificial immune system and attack graph correlation. To ana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of information security 2022-04, Vol.21 (2), p.191-205
Hauptverfasser: Melo, Roberto Vasconcelos, de Macedo, Douglas D. J., Kreutz, Diego, De Benedictis, Alessandra, Fiorenza, Mauricio Martinuzzi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anomaly-based detection techniques have a high number of false positives, which degrades the detection performance. To address this issue, we propose a distributed intrusion detection system, named ISM-AC, based on anomaly detection using artificial immune system and attack graph correlation. To analyze network traffic, we use negative selection, clonal selection, and immune network algorithms to implement an agent-based detection system. ISM-AC leverages the programmability of software-defined networking to reduce the false positive rate. Our findings show that ISM-AC achieves better detection performance for denial of service, user to root, remote to local, and probe attack classes. Alert correlation plays a key role in this achievement.
ISSN:1615-5262
1615-5270
DOI:10.1007/s10207-021-00550-x