ISM-AC: an immune security model based on alert correlation and software-defined networking
Anomaly-based detection techniques have a high number of false positives, which degrades the detection performance. To address this issue, we propose a distributed intrusion detection system, named ISM-AC, based on anomaly detection using artificial immune system and attack graph correlation. To ana...
Gespeichert in:
Veröffentlicht in: | International journal of information security 2022-04, Vol.21 (2), p.191-205 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Anomaly-based detection techniques have a high number of false positives, which degrades the detection performance. To address this issue, we propose a distributed intrusion detection system, named ISM-AC, based on anomaly detection using artificial immune system and attack graph correlation. To analyze network traffic, we use negative selection, clonal selection, and immune network algorithms to implement an agent-based detection system. ISM-AC leverages the programmability of software-defined networking to reduce the false positive rate. Our findings show that ISM-AC achieves better detection performance for denial of service, user to root, remote to local, and probe attack classes. Alert correlation plays a key role in this achievement. |
---|---|
ISSN: | 1615-5262 1615-5270 |
DOI: | 10.1007/s10207-021-00550-x |