Pressure tuned incommensurability and guest structure transition in compressed scandium from machine learning atomic simulation

Scandium (Sc) is the lightest non-main-group element and transforms to a host-guest (H-G) incommensurate structure under gigapascal (GPa) pressures. While the host structure is stable over a wide pressure range, the guest structure may exist in multiple forms, featuring different incommensurate rati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2022-03, Vol.24 (11), p.77-713
Hauptverfasser: Zhu, Sheng-cai, Huang, Zhen-bo, Hu, Qingyang, Xu, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Scandium (Sc) is the lightest non-main-group element and transforms to a host-guest (H-G) incommensurate structure under gigapascal (GPa) pressures. While the host structure is stable over a wide pressure range, the guest structure may exist in multiple forms, featuring different incommensurate ratios, and mixing up to generate long-range "disordered" guest structures. Here, we employed the recently developed global neural network (g-NN) potential and the stochastic surface walking (SSW) global optimization algorithm to explore the global potential energy surface of Sc under various pressures. We probe the global minima structure in a system made of hundreds of atoms and revealed that the solid-phase transition between Sc-I and H-G Sc-II phases is fully reconstructive in nature. Above 62.5 GPa, the pressure will further destabilize the face-centered tetragonal (fct, Sc-IIa) guest structure to a body-centered tetragonal phase (bct, Sc-IIb), while sustaining the host structure. The structural transition mechanism of this work will shed light on the nature of the complex H-G structural modifications in compressed metals. We resolve the solid-phase transition between Sc-I and H-G Sc-II phases, which is fully reconstructive in nature, and found that a higher pressure will destabilize the face-centered tetragonal (fct, Sc-IIa) guest structure to a body-centered tetragonal phase (bct, Sc-IIb) while sustaining the host structure.
ISSN:1463-9076
1463-9084
DOI:10.1039/d1cp05803g