Unitary equivalence of multiplication operators on the Bergman spaces of polygons
In this paper, we will show that the unitary equivalence of two multiplication operators on the Bergman spaces on polygons depends on the geometry of the polygon.
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2022-03, Vol.65 (1), p.123-133 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 133 |
---|---|
container_issue | 1 |
container_start_page | 123 |
container_title | Canadian mathematical bulletin |
container_volume | 65 |
creator | Huang, Hansong Zheng, Dechao |
description | In this paper, we will show that the unitary equivalence of two multiplication operators on the Bergman spaces on polygons depends on the geometry of the polygon. |
doi_str_mv | 10.4153/S0008439521000151 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2640949768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_4153_S0008439521000151</cupid><sourcerecordid>2640949768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-69b16695fe09400f58f8e82cf6356bf872a8c795735a4af11bf06613c5dbc7a23</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA82qSzedRi19QENGel2ya1C27m22SFfrvzdKCB_E0M7zv8w4zAFxjdEsxK-8-EEKSlooRnDvM8AmYYap4QYkUp2A2ycWkn4OLGLfZIphgM_C-6pukwx7a3dh869b2xkLvYDe2qRnaxujU-B76wQadfIgwD-nLwgcbNp3uYRy0sXEiBt_uN76Pl-DM6Tbaq2Odg9XT4-fipVi-Pb8u7peFIVylgqsac66Ys0hRhByTTlpJjOMl47WTgmhphGKiZJpqh3HtEOe4NGxdG6FJOQc3h9wh-N1oY6q2fgx9XlkRTnOoElxmFz64TPAxBuuqITRdPrjCqJo-V_35XGbKI6O7OjTrjf2N_p_6ATEXb_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640949768</pqid></control><display><type>article</type><title>Unitary equivalence of multiplication operators on the Bergman spaces of polygons</title><source>Cambridge Journals</source><creator>Huang, Hansong ; Zheng, Dechao</creator><creatorcontrib>Huang, Hansong ; Zheng, Dechao</creatorcontrib><description>In this paper, we will show that the unitary equivalence of two multiplication operators on the Bergman spaces on polygons depends on the geometry of the polygon.</description><identifier>ISSN: 0008-4395</identifier><identifier>EISSN: 1496-4287</identifier><identifier>DOI: 10.4153/S0008439521000151</identifier><language>eng</language><publisher>Canada: Canadian Mathematical Society</publisher><subject>Equivalence ; Hilbert space ; Multiplication ; Neighborhoods ; Operators ; Polygons ; Theorems</subject><ispartof>Canadian mathematical bulletin, 2022-03, Vol.65 (1), p.123-133</ispartof><rights>Canadian Mathematical Society 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-69b16695fe09400f58f8e82cf6356bf872a8c795735a4af11bf06613c5dbc7a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0008439521000151/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>Huang, Hansong</creatorcontrib><creatorcontrib>Zheng, Dechao</creatorcontrib><title>Unitary equivalence of multiplication operators on the Bergman spaces of polygons</title><title>Canadian mathematical bulletin</title><addtitle>Can. Math. Bull</addtitle><description>In this paper, we will show that the unitary equivalence of two multiplication operators on the Bergman spaces on polygons depends on the geometry of the polygon.</description><subject>Equivalence</subject><subject>Hilbert space</subject><subject>Multiplication</subject><subject>Neighborhoods</subject><subject>Operators</subject><subject>Polygons</subject><subject>Theorems</subject><issn>0008-4395</issn><issn>1496-4287</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvA82qSzedRi19QENGel2ya1C27m22SFfrvzdKCB_E0M7zv8w4zAFxjdEsxK-8-EEKSlooRnDvM8AmYYap4QYkUp2A2ycWkn4OLGLfZIphgM_C-6pukwx7a3dh869b2xkLvYDe2qRnaxujU-B76wQadfIgwD-nLwgcbNp3uYRy0sXEiBt_uN76Pl-DM6Tbaq2Odg9XT4-fipVi-Pb8u7peFIVylgqsac66Ys0hRhByTTlpJjOMl47WTgmhphGKiZJpqh3HtEOe4NGxdG6FJOQc3h9wh-N1oY6q2fgx9XlkRTnOoElxmFz64TPAxBuuqITRdPrjCqJo-V_35XGbKI6O7OjTrjf2N_p_6ATEXb_s</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Huang, Hansong</creator><creator>Zheng, Dechao</creator><general>Canadian Mathematical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220301</creationdate><title>Unitary equivalence of multiplication operators on the Bergman spaces of polygons</title><author>Huang, Hansong ; Zheng, Dechao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-69b16695fe09400f58f8e82cf6356bf872a8c795735a4af11bf06613c5dbc7a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Equivalence</topic><topic>Hilbert space</topic><topic>Multiplication</topic><topic>Neighborhoods</topic><topic>Operators</topic><topic>Polygons</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hansong</creatorcontrib><creatorcontrib>Zheng, Dechao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business & Current Affairs Database</collection><collection>Canadian Business & Current Affairs Database (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Canadian mathematical bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hansong</au><au>Zheng, Dechao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unitary equivalence of multiplication operators on the Bergman spaces of polygons</atitle><jtitle>Canadian mathematical bulletin</jtitle><addtitle>Can. Math. Bull</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>65</volume><issue>1</issue><spage>123</spage><epage>133</epage><pages>123-133</pages><issn>0008-4395</issn><eissn>1496-4287</eissn><abstract>In this paper, we will show that the unitary equivalence of two multiplication operators on the Bergman spaces on polygons depends on the geometry of the polygon.</abstract><cop>Canada</cop><pub>Canadian Mathematical Society</pub><doi>10.4153/S0008439521000151</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-4395 |
ispartof | Canadian mathematical bulletin, 2022-03, Vol.65 (1), p.123-133 |
issn | 0008-4395 1496-4287 |
language | eng |
recordid | cdi_proquest_journals_2640949768 |
source | Cambridge Journals |
subjects | Equivalence Hilbert space Multiplication Neighborhoods Operators Polygons Theorems |
title | Unitary equivalence of multiplication operators on the Bergman spaces of polygons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A23%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unitary%20equivalence%20of%20multiplication%20operators%20on%20the%20Bergman%20spaces%20of%20polygons&rft.jtitle=Canadian%20mathematical%20bulletin&rft.au=Huang,%20Hansong&rft.date=2022-03-01&rft.volume=65&rft.issue=1&rft.spage=123&rft.epage=133&rft.pages=123-133&rft.issn=0008-4395&rft.eissn=1496-4287&rft_id=info:doi/10.4153/S0008439521000151&rft_dat=%3Cproquest_cross%3E2640949768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640949768&rft_id=info:pmid/&rft_cupid=10_4153_S0008439521000151&rfr_iscdi=true |