Unitary equivalence of multiplication operators on the Bergman spaces of polygons

In this paper, we will show that the unitary equivalence of two multiplication operators on the Bergman spaces on polygons depends on the geometry of the polygon.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin 2022-03, Vol.65 (1), p.123-133
Hauptverfasser: Huang, Hansong, Zheng, Dechao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 1
container_start_page 123
container_title Canadian mathematical bulletin
container_volume 65
creator Huang, Hansong
Zheng, Dechao
description In this paper, we will show that the unitary equivalence of two multiplication operators on the Bergman spaces on polygons depends on the geometry of the polygon.
doi_str_mv 10.4153/S0008439521000151
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2640949768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_4153_S0008439521000151</cupid><sourcerecordid>2640949768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-69b16695fe09400f58f8e82cf6356bf872a8c795735a4af11bf06613c5dbc7a23</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA82qSzedRi19QENGel2ya1C27m22SFfrvzdKCB_E0M7zv8w4zAFxjdEsxK-8-EEKSlooRnDvM8AmYYap4QYkUp2A2ycWkn4OLGLfZIphgM_C-6pukwx7a3dh869b2xkLvYDe2qRnaxujU-B76wQadfIgwD-nLwgcbNp3uYRy0sXEiBt_uN76Pl-DM6Tbaq2Odg9XT4-fipVi-Pb8u7peFIVylgqsac66Ys0hRhByTTlpJjOMl47WTgmhphGKiZJpqh3HtEOe4NGxdG6FJOQc3h9wh-N1oY6q2fgx9XlkRTnOoElxmFz64TPAxBuuqITRdPrjCqJo-V_35XGbKI6O7OjTrjf2N_p_6ATEXb_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640949768</pqid></control><display><type>article</type><title>Unitary equivalence of multiplication operators on the Bergman spaces of polygons</title><source>Cambridge Journals</source><creator>Huang, Hansong ; Zheng, Dechao</creator><creatorcontrib>Huang, Hansong ; Zheng, Dechao</creatorcontrib><description>In this paper, we will show that the unitary equivalence of two multiplication operators on the Bergman spaces on polygons depends on the geometry of the polygon.</description><identifier>ISSN: 0008-4395</identifier><identifier>EISSN: 1496-4287</identifier><identifier>DOI: 10.4153/S0008439521000151</identifier><language>eng</language><publisher>Canada: Canadian Mathematical Society</publisher><subject>Equivalence ; Hilbert space ; Multiplication ; Neighborhoods ; Operators ; Polygons ; Theorems</subject><ispartof>Canadian mathematical bulletin, 2022-03, Vol.65 (1), p.123-133</ispartof><rights>Canadian Mathematical Society 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-69b16695fe09400f58f8e82cf6356bf872a8c795735a4af11bf06613c5dbc7a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0008439521000151/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>Huang, Hansong</creatorcontrib><creatorcontrib>Zheng, Dechao</creatorcontrib><title>Unitary equivalence of multiplication operators on the Bergman spaces of polygons</title><title>Canadian mathematical bulletin</title><addtitle>Can. Math. Bull</addtitle><description>In this paper, we will show that the unitary equivalence of two multiplication operators on the Bergman spaces on polygons depends on the geometry of the polygon.</description><subject>Equivalence</subject><subject>Hilbert space</subject><subject>Multiplication</subject><subject>Neighborhoods</subject><subject>Operators</subject><subject>Polygons</subject><subject>Theorems</subject><issn>0008-4395</issn><issn>1496-4287</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvA82qSzedRi19QENGel2ya1C27m22SFfrvzdKCB_E0M7zv8w4zAFxjdEsxK-8-EEKSlooRnDvM8AmYYap4QYkUp2A2ycWkn4OLGLfZIphgM_C-6pukwx7a3dh869b2xkLvYDe2qRnaxujU-B76wQadfIgwD-nLwgcbNp3uYRy0sXEiBt_uN76Pl-DM6Tbaq2Odg9XT4-fipVi-Pb8u7peFIVylgqsac66Ys0hRhByTTlpJjOMl47WTgmhphGKiZJpqh3HtEOe4NGxdG6FJOQc3h9wh-N1oY6q2fgx9XlkRTnOoElxmFz64TPAxBuuqITRdPrjCqJo-V_35XGbKI6O7OjTrjf2N_p_6ATEXb_s</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Huang, Hansong</creator><creator>Zheng, Dechao</creator><general>Canadian Mathematical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220301</creationdate><title>Unitary equivalence of multiplication operators on the Bergman spaces of polygons</title><author>Huang, Hansong ; Zheng, Dechao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-69b16695fe09400f58f8e82cf6356bf872a8c795735a4af11bf06613c5dbc7a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Equivalence</topic><topic>Hilbert space</topic><topic>Multiplication</topic><topic>Neighborhoods</topic><topic>Operators</topic><topic>Polygons</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hansong</creatorcontrib><creatorcontrib>Zheng, Dechao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business &amp; Current Affairs Database</collection><collection>Canadian Business &amp; Current Affairs Database (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Canadian mathematical bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hansong</au><au>Zheng, Dechao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unitary equivalence of multiplication operators on the Bergman spaces of polygons</atitle><jtitle>Canadian mathematical bulletin</jtitle><addtitle>Can. Math. Bull</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>65</volume><issue>1</issue><spage>123</spage><epage>133</epage><pages>123-133</pages><issn>0008-4395</issn><eissn>1496-4287</eissn><abstract>In this paper, we will show that the unitary equivalence of two multiplication operators on the Bergman spaces on polygons depends on the geometry of the polygon.</abstract><cop>Canada</cop><pub>Canadian Mathematical Society</pub><doi>10.4153/S0008439521000151</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-4395
ispartof Canadian mathematical bulletin, 2022-03, Vol.65 (1), p.123-133
issn 0008-4395
1496-4287
language eng
recordid cdi_proquest_journals_2640949768
source Cambridge Journals
subjects Equivalence
Hilbert space
Multiplication
Neighborhoods
Operators
Polygons
Theorems
title Unitary equivalence of multiplication operators on the Bergman spaces of polygons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A23%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unitary%20equivalence%20of%20multiplication%20operators%20on%20the%20Bergman%20spaces%20of%20polygons&rft.jtitle=Canadian%20mathematical%20bulletin&rft.au=Huang,%20Hansong&rft.date=2022-03-01&rft.volume=65&rft.issue=1&rft.spage=123&rft.epage=133&rft.pages=123-133&rft.issn=0008-4395&rft.eissn=1496-4287&rft_id=info:doi/10.4153/S0008439521000151&rft_dat=%3Cproquest_cross%3E2640949768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640949768&rft_id=info:pmid/&rft_cupid=10_4153_S0008439521000151&rfr_iscdi=true