Bi-Lipschitz Continuity of Quasiconformal Solutions to a Biharmonic Dirichlet–Neumann Problem in the Unit Disk
Let w be a K -quasiconformal self-mapping of the unit disk D satisfying the Dirichlet–Neumann problem: ( ∂ z ∂ z ¯ ) 2 w = g in D , w = γ 0 and ∂ ν ∂ z ∂ z ¯ w = γ on T (the unit circle), 1 2 π i ∫ T w ζ ζ ¯ ( ζ ) d ζ ζ = c , where ∂ ν denotes the differentiation in the outward normal direction. In...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2022-05, Vol.32 (5), Article 170 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
w
be a
K
-quasiconformal self-mapping of the unit disk
D
satisfying the Dirichlet–Neumann problem:
(
∂
z
∂
z
¯
)
2
w
=
g
in
D
,
w
=
γ
0
and
∂
ν
∂
z
∂
z
¯
w
=
γ
on
T
(the unit circle),
1
2
π
i
∫
T
w
ζ
ζ
¯
(
ζ
)
d
ζ
ζ
=
c
, where
∂
ν
denotes the differentiation in the outward normal direction. In addition, suppose that the data for
w
satisfy the following two conditions:
1
2
π
∫
0
2
π
γ
(
e
it
)
d
t
=
2
π
∫
D
g
(
ζ
)
d
A
(
ζ
)
and
w
(
0
)
=
0
. The aim of this paper is to prove that
w
is Lipschitz continuous and, furthermore, it is bi-Lipschitz continuous when |
c
|,
‖
γ
‖
∞
and
‖
g
‖
∞
are small enough. Moreover, the estimates are asymptotically sharp as
K
→
1
,
|
c
|
→
0
,
‖
γ
‖
∞
→
0
and
‖
g
‖
∞
→
0
, and so, such a mapping
w
behaves almost like a rotation for sufficiently small
K
, |
c
|,
‖
γ
‖
∞
and
‖
g
‖
∞
. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-022-00902-6 |