On quantum jumps and attractors of the Maxwell–Schrödinger equations

Our goal is the discussion of the problem of mathematical interpretation of basic postulates (or “principles”) of Quantum Mechanics: transitions to quantum stationary orbits, the wave-particle duality, and the probabilistic interpretation, in the context of semiclassical self-consistent Maxwell–Schr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales mathématiques du Québec 2022-04, Vol.46 (1), p.139-159
1. Verfasser: Komech, Alexander I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our goal is the discussion of the problem of mathematical interpretation of basic postulates (or “principles”) of Quantum Mechanics: transitions to quantum stationary orbits, the wave-particle duality, and the probabilistic interpretation, in the context of semiclassical self-consistent Maxwell–Schrödinger equations. We discuss possible dynamical interpretation of these postulates relying on a new general mathematical conjecture on global attractors of G -invariant nonlinear Hamiltonian partial differential equations with a Lie symmetry group G . This conjecture is inspired by the results on global attractors of nonlinear Hamiltonian PDEs obtained by the author together with his collaborators since 1990 for a list of model equations with three basic symmetry groups: the trivial group, the group of translations, and the unitary group U ( 1 ) . We sketch these results.
ISSN:2195-4755
2195-4763
DOI:10.1007/s40316-021-00179-1