Prediction of Continuous Blood Pressure Using Multiple Gated Recurrent Unit Embedded in SENet

In order to accurately predict blood pressure waveform from pulse waveform, a multiple gated recurrent unit (GRU) model embedded in squeeze-and-excitation network (SENet) is proposed for continuous blood pressure prediction. Firstly, the features of the pulse are extracted from multiple GRU channels...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced computational intelligence and intelligent informatics 2022-03, Vol.26 (2), p.256-263
Hauptverfasser: Chen, Xiaolei, Chang, Hao, Cao, Baoning, Lu, Yubing, Lin, Dongmei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to accurately predict blood pressure waveform from pulse waveform, a multiple gated recurrent unit (GRU) model embedded in squeeze-and-excitation network (SENet) is proposed for continuous blood pressure prediction. Firstly, the features of the pulse are extracted from multiple GRU channels. Then, the SENet module is embedded to learn the interdependence among the channels, so as to get the weight of each channel. Finally, the weights were added to each channel and the predicted continuous blood pressure values were obtained by integrating the two linear layers. The experimental results show that the embedded SENet can effectively enhance the predictive ability of multi-GRU structure and obtain good continuous blood pressure waveform. Compared with the LSTM and GRU model without SENet, the MSE errors of the proposed method are reduced by 29.3% and 25.0% respectively, the training time of the proposed method are decreased by 69.8% and 68.7%, the test time is reduced by 65.9% and 25.2% and it has the fewest model parameters.
ISSN:1343-0130
1883-8014
DOI:10.20965/jaciii.2022.p0256