A Refined Branching Algorithm for the Maximum Satisfiability Problem

The Maximum satisfiability problem ( MaxSAT ) is a fundamental NP-hard problem which has significant applications in many areas. Based on refined observations, we derive a branching algorithm of running time  O ∗ ( 1 . 2989 m ) for the MaxSAT problem, where  m denotes the number of clauses in the gi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica 2022-04, Vol.84 (4), p.982-1006
Hauptverfasser: Li, Wenjun, Xu, Chao, Yang, Yongjie, Chen, Jianer, Wang, Jianxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Maximum satisfiability problem ( MaxSAT ) is a fundamental NP-hard problem which has significant applications in many areas. Based on refined observations, we derive a branching algorithm of running time  O ∗ ( 1 . 2989 m ) for the MaxSAT problem, where  m denotes the number of clauses in the given CNF formula. Our algorithm considerably improves the previous best result  O ∗ ( 1 . 3248 m ) published in 2004. For our purpose, we derive improved branching strategies for variables of degrees 3, 4, and 5. The worst case of our branching algorithm is at certain degree-4 variables. To serve the branching rules, we also propose a variety of reduction rules which can be exhaustively applied in polynomial time.
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-022-00938-8