Lp-regularity of rough bi-parameter Fourier integral operators
Let T be a bi-parameter Fourier integral operator introduced by Hong et al. (De Gruyter 30(1):87–107, 2018) and defined by amplitude a ( x , ξ , η ) ∈ L ∞ B S ϱ m with m = ( m 1 , m 2 ) ∈ R 2 , ϱ = ( ϱ 1 , ϱ 2 ) ∈ [ 0 , 1 ] × [ 0 , 1 ] and phase function φ ( x , ξ , η ) = φ 1 ( x , ξ ) + φ 2 ( x , η...
Gespeichert in:
Veröffentlicht in: | Journal of pseudo-differential operators and applications 2022, Vol.13 (2) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
T
be a bi-parameter Fourier integral operator introduced by Hong et al. (De Gruyter 30(1):87–107, 2018) and defined by amplitude
a
(
x
,
ξ
,
η
)
∈
L
∞
B
S
ϱ
m
with
m
=
(
m
1
,
m
2
)
∈
R
2
,
ϱ
=
(
ϱ
1
,
ϱ
2
)
∈
[
0
,
1
]
×
[
0
,
1
]
and phase function
φ
(
x
,
ξ
,
η
)
=
φ
1
(
x
,
ξ
)
+
φ
2
(
x
,
η
)
with
φ
1
,
φ
2
∈
L
∞
Φ
2
satisfying the rough non-degeneracy condition, where
x
=
(
x
1
,
x
2
)
∈
R
n
×
R
n
and
η
,
ξ
∈
R
n
\
{
0
}
. It is showed that
T
is bounded on
L
p
(
R
n
)
(
1
≤
p
≤
∞
)
provided that
m
i
<
-
[
n
-
1
2
ϱ
i
+
n
2
(
1
-
ϱ
i
)
]
(
|
1
2
-
1
p
|
+
1
2
)
-
n
2
(
1
-
ϱ
i
)
1
p
,
i
=
1
,
2
. |
---|---|
ISSN: | 1662-9981 1662-999X |
DOI: | 10.1007/s11868-022-00445-y |