Torque Control for Electric Drive System Used in Electric Vehicle in the Presence of Permanent Magnet Demagnetization Faults

The performance of conventional torque control for PMSM drive used in electric vehicles (EVs) from the viewpoint of permanent magnet (PM) demagnetization faults has not been satisfactory. Therefore, a combination method based on sliding-mode observer and active disturbance rejection control is prese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced computational intelligence and intelligent informatics 2022-03, Vol.26 (2), p.226-235
Hauptverfasser: Huang, Gang, Li, Jiajun, Huang, Wei, Yang, Yao, Zhao, Kaihui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The performance of conventional torque control for PMSM drive used in electric vehicles (EVs) from the viewpoint of permanent magnet (PM) demagnetization faults has not been satisfactory. Therefore, a combination method based on sliding-mode observer and active disturbance rejection control is presented. First, the model of the PMSM system with PM demagnetization faults is constructed. Then, a sliding-mode observer is designed based on a minimum extended flux linkage to estimate the torque and the PM flux linkages of the system. A current controller is presented based on active disturbance rejection control approach to reject the PM demagnetization faults. The method is useful to improve the control performance of the PMSM drive system. And the system is robust to system parameters variations. Finally, an RT-LAB real-time simulation is used to build a simulation model of hardware-in-the-loop based on the experimentally validated model that is derived from the actual development process for an electric bus. The simulation and experimental results demonstrate the effectiveness of the method.
ISSN:1343-0130
1883-8014
DOI:10.20965/jaciii.2022.p0226