Uncertainty optimization based approach to data engineering

Data is generating at an exponential pace with the advance in information technology. Such data highly contain un- certain and vague information. Data engineering deals with the methodologies to assess and evaluate uncertainties in the dataset and generate useful information from the data pool. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shende, Pradeep, Sinha, Arvind Kumar
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data is generating at an exponential pace with the advance in information technology. Such data highly contain un- certain and vague information. Data engineering deals with the methodologies to assess and evaluate uncertainties in the dataset and generate useful information from the data pool. This work presents a mathematical approach to evaluate the dataset's uncer- tainties and its application to data reduction. The proposed method is used for attribute selection for early-predicting of diabetes. Experimental results show that the prediction accuracy using the rough set method is higher than the other methods.
ISSN:0094-243X
1551-7616
DOI:10.1063/5.0083526