High-accuracy 4D particle trackers with resistive silicon detectors (AC-LGADs)
Future particle trackers will have to measure concurrently position and time with unprecedented accuracy, aiming at ∼5 μm and a few 10s ps resolution respectively. A promising good candidate for such a task are the resistive AC-LGADs, solid state silicon sensors of novel design, characterized by an...
Gespeichert in:
Veröffentlicht in: | Journal of instrumentation 2022-03, Vol.17 (3), p.C03013 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Future particle trackers will have to measure concurrently position and time with unprecedented accuracy, aiming at ∼5 μm and a few 10s ps resolution respectively. A promising good candidate for such a task are the resistive AC-LGADs, solid state silicon sensors of novel design, characterized by an internal moderate gain and an AC-coupled resistive read-out to achieve signal sharing among pads. The sensor design leads to a drastic reduction in the number of read-out channels, has an intrinsic 100% fill factor, and adapts easily to any read-out geometry. This report describes the design challenges, the signal formation and recent test results obtained with the first prototypes. A part is also dedicated to the reconstruction techniques that exploit the distributed nature of the signal, including machine learning. An outlook to a future development for optimized read-out electrodes and electronics is also presented. |
---|---|
ISSN: | 1748-0221 1748-0221 |
DOI: | 10.1088/1748-0221/17/03/C03013 |