Kalman Filter for Linear Systems With Unknown Structural Parameters

This brief considers Kalman filter for linear systems with unknown structural parameters. We design a Bayesian parameter identification algorithm based on maximum likelihood (ML) criterion and expectation maximization (EM). Under the identification of structural parameter, we perform the Kalman filt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2022-03, Vol.69 (3), p.1852-1856
Hauptverfasser: Xin, Dong-Jin, Shi, Ling-Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This brief considers Kalman filter for linear systems with unknown structural parameters. We design a Bayesian parameter identification algorithm based on maximum likelihood (ML) criterion and expectation maximization (EM). Under the identification of structural parameter, we perform the Kalman filter to estimate the states. The Kalman filter and the parameter identification algorithm are interactive to estimate the states and the structural parameters. More specifically, first, we use EM algorithm together with Kalman smoother to estimate the structural parameters. Then, on the basis of results provided by the first step, we employ the classical Kalman filter to predict and update the states, which formulates the final proposed Kalman filter. Performance analysis and simulation results verify the presented filter.
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2021.3103609