Rank Two Approximations of \(2 \times 2 \times 2\) Tensors over \(\mathbb{R}\)

We provide a coordinate-free proof that real \(2 \times 2 \times 2\) rank three tensors do not have optimal rank two approximations with respect to the Frobenius norm. This result was first proved in by considering the \({\text{GL}(V^1) \times \text{GL}(V^2) \times \text{GL}(V^3)}\) orbit classes of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-03
1. Verfasser: David Warren Katz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide a coordinate-free proof that real \(2 \times 2 \times 2\) rank three tensors do not have optimal rank two approximations with respect to the Frobenius norm. This result was first proved in by considering the \({\text{GL}(V^1) \times \text{GL}(V^2) \times \text{GL}(V^3)}\) orbit classes of \({V^1 \otimes V^2 \otimes V^3}\) and the \(2 \times 2 \times 2\) hyperdeterminant. Our coordinate-free proof expands on this known result by developing a proof method that can be generalized more readily to higher dimensional \(n_1 \times n_2 \times n_3\) tensor spaces.
ISSN:2331-8422