Bioprocess Scale-up for Acetohydroxamic Acid Production by Hyperactive Acyltransferase of Immobilized Rhodococcus Pyridinivorans
In this study, Rhodococcus pyridinivorans cells containing hyperactive acyltransferase was immobilized on various macromolecules based-polymeric matrices and used to improve acetohydroxamic acid production. The calcium-alginate-based matrix retained the maximum residual activity up to 97.8% as compa...
Gespeichert in:
Veröffentlicht in: | Catalysis letters 2022-04, Vol.152 (4), p.944-953 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study,
Rhodococcus pyridinivorans
cells containing hyperactive acyltransferase was immobilized on various macromolecules based-polymeric matrices and used to improve acetohydroxamic acid production. The calcium-alginate-based matrix retained the maximum residual activity up to 97.8% as compared to free cells (576 U/mg of dry cell weight). After immobilization, cells exhibited a significant improvement in their tolerance towards pH, temperature, and metal ions as potent enzyme inhibitors. Immobilized cells showed 25.5-fold higher thermal stability at 60 °C to control (free cells). Compared to free cells, immobilized cells exhibited a high bioconversion of acetamide and hydroxylamine-HCl to acetohydroxamic acid up to 96% molar conversion. Repeated bench-scale production at 3-L culture, immobilized cells showed 9.5-fold higher residual conversion as compared to control (100%), after five cycles of reuses. The product characterization achieved high purity (97%) of acetohydroxamic acid. This finding showed high feasibility to achieve efficient conversion that can be scaled up to the industrial level for biotechnological application.
Graphical Abstract |
---|---|
ISSN: | 1011-372X 1572-879X |
DOI: | 10.1007/s10562-021-03696-4 |