Quasiparticle Poisoning of Superconducting Qubits from Resonant Absorption of Pair-breaking Photons

The ideal superconductor provides a pristine environment for the delicate states of a quantum computer: because there is an energy gap to excitations, there are no spurious modes with which the qubits can interact, causing irreversible decay of the quantum state. As a practical matter, however, ther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-03
Hauptverfasser: Chuan-Hong, Liu, Harrison, David C, Patel, Shravan, Wilen, Christopher D, Rafferty, Owen, Shearrow, Abigail, Ballard, Andrew, Iaia, Vito, Ku, Jaseung, Plourde, Britton L T, McDermott, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ideal superconductor provides a pristine environment for the delicate states of a quantum computer: because there is an energy gap to excitations, there are no spurious modes with which the qubits can interact, causing irreversible decay of the quantum state. As a practical matter, however, there exists a high density of excitations out of the superconducting ground state even at ultralow temperature; these are known as quasiparticles. Observed quasiparticle densities are of order 1~\(\mu\)m\(^{-3}\), tens of orders of magnitude larger than the equilibrium density expected from theory. Nonequilibrium quasiparticles extract energy from the qubit mode and induce discrete changes in qubit offset charge, a potential source of dephasing. Here we show that a dominant mechanism for quasiparticle poisoning in superconducting qubits is direct absorption of high-energy photons at the qubit junction. We use a Josephson junction-based photon source to controllably dose qubit circuits with millimeter-wave radiation, and we use an interferometric quantum gate sequence to reconstruct the charge parity on the qubit island. We find that the structure of the qubit itself acts as a resonant antenna for millimeter-wave radiation, providing an efficient path for photons to generate quasiparticle excitations. A deep understanding of this physics will pave the way to realization of next-generation superconducting qubits that are robust against quasiparticle poisoning and could enable a new class of quantum sensors for dark matter detection.
ISSN:2331-8422